Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 087, 23 pages      arXiv:1806.05912      https://doi.org/10.3842/SIGMA.2020.087

Perturbed $(2n-1)$-Dimensional Kepler Problem and the Nilpotent Adjoint Orbits of $U(n, n)$

Anatol Odzijewicz
Department of Mathematics, University of Białystok,Ciołkowskiego 1M, 15-245 Białystok, Poland

Received March 11, 2020, in final form September 01, 2020; Published online September 22, 2020

Abstract
We study the regularized $(2n-1)$-Kepler problem and other Hamiltonian systems which are related to the nilpotent coadjoint orbits of $U(n,n)$. The Kustaanheimo-Stiefel and Cayley regularization procedures are discussed and their equivalence is shown. Some integrable generalization (perturbation) of $(2n-1)$-Kepler problem is proposed.

Key words: integrable Hamiltonian systems; Kepler problem; nonlinear differential equations; symplectic geometry; Poisson geometry; Kustaanheimo-Stiefel transformation; celestial mechanics.

pdf (475 kb)   tex (31 kb)  

References

  1. Barut A.O., Kleinert H., Transition probabilities of the hydrogen atom from noncompact dynamical groups, Phys. Rev. 156 (1967), 1541-1545.
  2. Bouarroudj S., Meng G., The classical dynamic symmetry for the ${\rm U}(1)$-Kepler problems, J. Geom. Phys. 124 (2018), 1-15, arXiv:1509.08263.
  3. Cordani B., On the generalisation of the Kustaanheimo-Stiefel transformations, J. Phys. A: Math. Gen. 22 (1989), 2441-2446.
  4. Cordani B., Reina C., Spinor regularization of the $n$-dimensional Kepler problem, Lett. Math. Phys. 13 (1987), 79-82.
  5. Efstathiou K., Sadovskii D.A., Normalization and global analysis of perturbations of the hydrogen atom, Rev. Mod. Phys. 82 (2010), 2099-2154.
  6. Faraut J., Kor'anyi A., Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1994.
  7. Ferrer S., Crespo F., Alternative angle-based approach to the ${\mathcal{KS}}$-map. An interpretation through symmetry and reduction, J. Geom. Mech. 10 (2018), 359-372, arXiv:1711.08530.
  8. Horowski M., Odzijewicz A., Geometry of the Kepler system in coherent states approach, Ann. Inst. H. Poincaré Phys. Théor. 59 (1993), 69-89.
  9. Iwai T., The geometry of the ${\rm SU}(2)$ Kepler problem, J. Geom. Phys. 7 (1990), 507-535.
  10. Iwai T., A dynamical group ${\rm SU}(2,2)$ and its use in the MIC-Kepler problem, J. Phys. A: Math. Gen. 26 (1993), 609-630.
  11. Iwai T., Matsumoto S., Poisson mechanics for perturbed MIC-Kepler problems at both positive and negative energies, J. Phys. A: Math. Theor. 45 (2012), 365203, 34 pages.
  12. Iwai T., Uwano Y., The four-dimensional conformal Kepler problem reduces to the three-dimensional Kepler problem with a centrifugal potential and Dirac's monopole field. Classical theory, J. Math. Phys. 27 (1986), 1523-1529.
  13. Kirillov A.A., Elements of the theory of representations, Grundlehren der Mathematischen Wissenschaften, Vol. 220, Springer-Verlag, Berlin - New York, 1976.
  14. Kummer M., On the regularization of the Kepler problem, Comm. Math. Phys. 84 (1982), 133-152.
  15. Kustaanheimo P., Stiefel E., Perturbation theory of Kepler motion based on spinor regularization, J. Reine Angew. Math. 218 (1965), 204-219.
  16. Lang S., Algebra, 3rd ed., Graduate Texts in Mathematics, Vol. 211, Springer-Verlag, New York, 2002.
  17. Malkin I.A., Man'ko V.I., Symmetry of the hydrogen atom, JETP Lett. 2 (1965), 146-148.
  18. McIntosh H.V., Cisneros A., Degeneracy in the presence of a magnetic monopole, J. Math. Phys. 11 (1970), 896-916.
  19. Meng G., Generalized MICZ-Kepler problems and unitary highest weight modules, II, J. Lond. Math. Soc. 81 (2010), 663-678, arXiv:0704.2936.
  20. Meng G., Euclidean Jordan algebras, hidden actions, and J-Kepler problems, J. Math. Phys. 52 (2011), 112104, 35 pages, arXiv:0911.2977.
  21. Meng G., Generalized Kepler problems. I. Without magnetic charges, J. Math. Phys. 54 (2013), 012109, 25 pages, arXiv:1104.2585.
  22. Meng G., The universal Kepler problem, J. Geom. Symmetry Phys. 36 (2014), 47-57, arXiv:1011.6609.
  23. Meng G., On the trajectories of ${\rm U}(1)$-Kepler problems, in Geometry, Integrability and Quantization XVI, Avangard Prima, Sofia, 2015, 219-230.
  24. Mladenov I., Tsanov V., Geometric quantization of the multidimensional Kepler problem, J. Geom. Phys. 2 (1985), 17-24.
  25. Mladenov I.M., Tsanov V.V., Geometric quantisation of the MIC-Kepler problem, J. Phys. A: Math. Gen. 20 (1987), 5865-5871.
  26. Moser J., Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure Appl. Math. 23 (1970), 609-636.
  27. Odzijewicz A., A conformal holomorphic field theory, Comm. Math. Phys. 107 (1986), 561-575.
  28. Odzijewicz A., Świętochowski M., Coherent states map for MIC-Kepler system, J. Math. Phys. 38 (1997), 5010-5030.
  29. Odzijewicz A., Wawreniuk E., Classical and quantum Kummer shape algebras, J. Phys. A: Math. Theor. 49 (2016), 265202, 33 pages, arXiv:1512.09279.
  30. Penrose R., Twistor algebra, J. Math. Phys. 8 (1967), 345-366.
  31. Simms D.J., Bohr-Sommerfeld orbits and quantizable symplectic manifolds, Proc. Cambridge Philos. Soc. 73 (1973), 489-491.
  32. Stiefel E.L., Scheifele G., Linear and regular celestial mechanics, Grundlehren der mathematischen Wissenschaften, Vol. 174, Springer-Verlag, Berlin - Heidelberg, 1971.
  33. Zhao L., Kustaanheimo-Stiefel regularization and the quadrupolar conjugacy, Regul. Chaotic Dyn. 20 (2015), 19-36, arXiv:1308.2314.
  34. Zwanzinger D., Exactly soluble nonrelativistic model of particles with both electric and magnetic charges, Phys. Rev. 176 (1968), 1480-1488.

Previous article  Next article  Contents of Volume 16 (2020)