Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 085, 33 pages      arXiv:2002.12836      https://doi.org/10.3842/SIGMA.2020.085

A Fock Model and the Segal-Bargmann Transform for the Minimal Representation of the Orthosymplectic Lie Superalgebra $\mathfrak{osp}(m,2|2n)$

Sigiswald Barbier, Sam Claerebout and Hendrik De Bie
Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Krijgslaan 281, 9000 Gent, Belgium

Received March 17, 2020, in final form August 12, 2020; Published online August 26, 2020

Abstract
The minimal representation of a semisimple Lie group is a 'small' infinite-dimensional irreducible unitary representation. It is thought to correspond to the minimal nilpotent coadjoint orbit in Kirillov's orbit philosophy. The Segal-Bargmann transform is an intertwining integral transformation between two different models of the minimal representation for Hermitian Lie groups of tube type. In this paper we construct a Fock model for the minimal representation of the orthosymplectic Lie superalgebra $\mathfrak{osp}(m,2|2n)$. We also construct an integral transform which intertwines the Schrödinger model for the minimal representation of the orthosymplectic Lie superalgebra $\mathfrak{osp}(m,2|2n)$ with this new Fock model.

Key words: Segal-Bargmann transform; Fock model; Schrödinger model; minimal representations; Lie superalgebras; spherical harmonics; Bessel-Fischer product.

pdf (518 kb)   tex (33 kb)  

References

  1. Alldridge A., Fréchet globalisations of Harish-Chandra supermodules, Int. Math. Res. Not. 2017 (2017), 5182-5232, arXiv:1403.4055.
  2. Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge, 1999.
  3. Barbier S., A minimal representation of the orthosymplectic Lie superalgebra, Ph.D. Thesis, Ghent University, 2018, available at http://hdl.handle.net/1854/LU-8560881.
  4. Barbier S., Coulembier K., Polynomial realisations of Lie (super)algebras and Bessel operators, Int. Math. Res. Not. 2017 (2017), 3148-3179, arXiv:1512.01387.
  5. Barbier S., Coulembier K., On structure and TKK algebras for Jordan superalgebras, Comm. Algebra 46 (2018), 684-704, arXiv:1609.00271.
  6. Barbier S., Frahm J., A minimal representation of the orthosymplectic Lie supergroup, Int. Math. Res. Not., to appear, arXiv:1710.07271.
  7. Bargmann V., On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math. 14 (1961), 187-214.
  8. Carmeli C., Cassinelli G., Toigo A., Varadarajan V.S., Unitary representations of super Lie groups and applications to the classification and multiplet structure of super particles, Comm. Math. Phys. 263 (2006), 217-258, arXiv:hep-th/0501061.
  9. Coulembier K., The orthosymplectic superalgebra in harmonic analysis, J. Lie Theory 23 (2013), 55-83, arXiv:1208.3827.
  10. Coulembier K., De Bie H., Sommen F., Orthosymplectically invariant functions in superspace, J. Math. Phys. 51 (2010), 083504, 23 pages, arXiv:1006.4744.
  11. De Bie H., Genest V.X., van de Vijver W., Vinet L., A higher rank Racah algebra and the ${\mathbb Z}^n_2$ Laplace-Dunkl operator, J. Phys. A: Math. Theor. 51 (2018), 025203, 20 pages, arXiv:1610.02638.
  12. De Bie H., Sommen F., Spherical harmonics and integration in superspace, J. Phys. A: Math. Theor. 40 (2007), 7193-7212, arXiv:0705.3148.
  13. de Goursac A., Michel J.-P., Superunitary representations of Heisenberg supergroups, Int. Math. Res. Not., to appear, arXiv:1601.07387.
  14. Folland G.B., Harmonic analysis in phase space, Annals of Mathematics Studies, Vol. 122, Princeton University Press, Princeton, NJ, 1989.
  15. Gan W.T., Savin G., On minimal representations definitions and properties, Represent. Theory 9 (2005), 46-93.
  16. Hilgert J., Kobayashi T., Mano G., Möllers J., Special functions associated with a certain fourth-order differential equation, Ramanujan J. 26 (2011), 1-34, arXiv:0907.2608.
  17. Hilgert J., Kobayashi T., Möllers J., Minimal representations via Bessel operators, J. Math. Soc. Japan 66 (2014), 349-414, arXiv:1106.3621.
  18. Hilgert J., Kobayashi T., Möllers J., Ørsted B., Fock model and Segal-Bargmann transform for minimal representations of Hermitian Lie groups, J. Funct. Anal. 263 (2012), 3492-3563, arXiv:1203.5462.
  19. Kirillov A.A., Lectures on the orbit method, Graduate Studies in Mathematics, Vol. 64, Amer. Math. Soc., Providence, RI, 2004.
  20. Kobayashi T., Mano G., The Schrödinger model for the minimal representation of the indefinite orthogonal group ${\rm O}(p,q)$, Mem. Amer. Math. Soc. 213 (2011), vi+132 pages, arXiv:0712.1769.
  21. Kobayashi T., Ørsted B., Analysis on the minimal representation of ${\rm O}(p,q)$. I. Realization via conformal geometry, Adv. Math. 180 (2003), 486-512, arXiv:math.RT/0111083.
  22. Kobayashi T., Ørsted B., Analysis on the minimal representation of ${\rm O}(p,q)$. II. Branching laws, Adv. Math. 180 (2003), 513-550, arXiv:math.RT/0111085.
  23. Kobayashi T., Ørsted B., Analysis on the minimal representation of ${\rm O}(p,q)$. III. Ultrahyperbolic equations on ${\mathbb R}^{p-1,q-1}$, Adv. Math. 180 (2003), 551-595, arXiv:math.RT/0111086.
  24. Lávička R., Šmíd D., Fischer decomposition for polynomials on superspace, J. Math. Phys. 56 (2015), 111704, 9 pages, arXiv:1508.03426.
  25. Neeb K.-H., Salmasian H., Lie supergroups, unitary representations, and invariant cones, in Supersymmetry in Mathematics and Physics, Lecture Notes in Math., Vol. 2027, Springer, Heidelberg, 2011, 195-239, arXiv:1012.2809.
  26. Salmasian H., Unitary representations of nilpotent super Lie groups, Comm. Math. Phys. 297 (2010), 189-227, arXiv:0906.2515.
  27. Tuynman G.M., The left-regular representation of a super Lie group, J. Lie Theory 29 (2019), 1-78.

Previous article  Next article  Contents of Volume 16 (2020)