|
SIGMA 16 (2020), 079, 15 pages arXiv:2003.05765
https://doi.org/10.3842/SIGMA.2020.079
Admissible Boundary Values for the Gerdjikov-Ivanov Equation with Asymptotically Time-Periodic Boundary Data
Samuel Fromm
Department of Mathematics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
Received March 13, 2020, in final form August 09, 2020; Published online August 19, 2020
Abstract
We consider the Gerdjikov-Ivanov equation in the quarter plane with Dirichlet boundary data and Neumann value converging to single exponentials $\alpha {\rm e}^{{\rm i}\omega t}$ and $c{\rm e}^{{\rm i}\omega t}$ as $t\to\infty$, respectively. Under the assumption that the initial data decay as $x\to\infty$, we derive necessary conditions on the parameters $\alpha$, $\omega$, $c$ for the existence of a solution of the corresponding initial boundary value problem.
Key words: initial-boundary value problem; integrable system; long-time asymptotics.
pdf (434 kb)
tex (19 kb)
References
- Antonopoulou D.C., Kamvissis S., On the Dirichlet to Neumann problem for the 1-dimensional cubic NLS equation on the half-line, Nonlinearity 28 (2015), 3073-3099, arXiv:1607.06286.
- Boutet de Monvel A., Its A., Kotlyarov V., Long-time asymptotics for the focusing NLS equation with time-periodic boundary condition, C. R. Math. Acad. Sci. Paris 345 (2007), 615-620.
- Boutet de Monvel A., Its A., Kotlyarov V., Long-time asymptotics for the focusing NLS equation with time-periodic boundary condition on the half-line, Comm. Math. Phys. 290 (2009), 479-522.
- Boutet de Monvel A., Kotlyarov V., The focusing nonlinear Schrödinger equation on the quarter plane with time-periodic boundary condition: a Riemann-Hilbert approach, J. Inst. Math. Jussieu 6 (2007), 579-611.
- Boutet de Monvel A., Kotlyarov V., Shepelsky D., Decaying long-time asymptotics for the focusing NLS equation with periodic boundary condition, Int. Math. Res. Not. 2009 (2009), 547-577.
- Boutet de Monvel A., Kotlyarov V.P., Shepelsky D., Zheng C., Initial boundary value problems for integrable systems: towards the long time asymptotics, Nonlinearity 23 (2010), 2483-2499.
- Colin M., Ohta M., Stability of solitary waves for derivative nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), 753-764.
- Deift P., Trubowitz E., Inverse scattering on the line, Comm. Pure Appl. Math. 32 (1979), 121-251.
- Erdougan M.B., Gürel T.B., Tzirakis N., The derivative nonlinear Schrödinger equation on the half line, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), 1947-1973, arXiv:1706.06898.
- Gerdzhikov V.S., Ivanov M.I., Kulish P.P., Quadratic bundle and nonlinear equations, Theoret. and Math. Phys. 44 (1980), 784-795.
- Kaup D.J., Newell A.C., An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys. 19 (1978), 798-801.
- Lenells J., Admissible boundary values for the defocusing nonlinear Schrödinger equation with asymptotically time-periodic data, J. Differential Equations 259 (2015), 5617-5639, arXiv:1407.5046.
- Lenells J., Fokas A.S., The nonlinear Schrödinger equation with $t$-periodic data: I. Exact results, Proc. Royal Soc. A 471 (2015), 20140925, 22 pages, arXiv:1412.0304.
- Lenells J., Fokas A.S., The nonlinear Schrödinger equation with $t$-periodic data: II. Perturbative results, Proc. Royal Soc. A 471 (2015), 20140926, 25 pages, arXiv:1412.0306.
- Liu J., Perry P.A., Sulem C., Global existence for the derivative nonlinear Schrödinger equation by the method of inverse scattering, Comm. Partial Differential Equations 41 (2016), 1692-1760, arXiv:1511.01173.
|
|