Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 075, 15 pages      arXiv:1906.11745      https://doi.org/10.3842/SIGMA.2020.075

The Racah Algebra as a Subalgebra of the Bannai-Ito Algebra

Hau-Wen Huang
Department of Mathematics, National Central University, Chung-Li 32001, Taiwan

Received May 22, 2020, in final form July 31, 2020; Published online August 10, 2020

Abstract
Assume that ${\mathbb F}$ is a field with $\operatorname{char}{\mathbb F}\not=2$. The Racah algebra $\Re$ is a unital associative ${\mathbb F}$-algebra defined by generators and relations. The generators are $A$, $B$, $C$, $D$ and the relations assert that $[A,B]=[B,C]=[C,A]=2D$ and each of $[A,D]+AC-BA$, $[B,D]+BA-CB$, $[C,D]+CB-AC$ is central in $\Re$. The Bannai-Ito algebra $\mathfrak{BI}$ is a unital associative ${\mathbb F}$-algebra generated by $X$, $Y$, $Z$ and the relations assert that each of $\{X,Y\}-Z$, $\{Y,Z\}-X$, $\{Z,X\}-Y$ is central in $\mathfrak{BI}$. It was discovered that there exists an ${\mathbb F}$-algebra homomorphism $\zeta\colon \Re\to \mathfrak{BI}$ that sends $A \mapsto \frac{(2X-3)(2X+1)}{16}$, $B \mapsto \frac{(2Y-3)(2Y+1)}{16}$, $C \mapsto \frac{(2Z-3)(2Z+1)}{16}$. We show that $\zeta$ is injective and therefore $\Re$ can be considered as an ${\mathbb F}$-subalgebra of $\mathfrak{BI}$. Moreover we show that any Casimir element of $\Re$ can be uniquely expressed as a polynomial in $\{X,Y\}-Z$, $\{Y,Z\}-X$, $\{Z,X\}-Y$ and $X+Y+Z$ with coefficients in ${\mathbb F}$.

Key words: Bannai-Ito algebra; Racah algebra; Casimir elements.

pdf (436.6 KB)   tex (19.5 KB)  

References

  1. Bergman G.M., The diamond lemma for ring theory, Adv. Math. 29 (1978), 178-218.
  2. Crampé N., Frappat L., Vinet L., Centralizers of the superalgebra $\mathfrak{osp}(1|2)$: the Brauer algebra as a quotient of the Bannai-Ito algebra, J. Phys. A: Math. Theor. 52 (2019), 424001, 11 pages, arXiv:1906.03936.
  3. De Bie H., De Clercq H., The $q$-Bannai-Ito algebra and multivariate $(-q)$-Racah and Bannai-Ito polynomials, J. London Math. Soc., to appear, arXiv:1902.07883.
  4. De Bie H., De Clercq H., van de Vijver W., The higher rank $q$-deformed Bannai-Ito and Askey-Wilson algebra, Comm. Math. Phys. 374 (2020), 277-316, arXiv:1805.06642.
  5. De Bie H., Genest V.X., Tsujimoto S., Vinet L., Zhedanov A., The Bannai-Ito algebra and some applications, J. Phys. Conf. Ser. 597 (2015), 012001, 16 pages, arXiv:1411.3913.
  6. De Bie H., Genest V.X., van de Vijver W., Vinet L., Bannai-Ito algebras and the $\mathfrak{osp}(1;2)$ superalgebra, in Physical and Mathematical Aspects of Symmetries, Proceedings of the 31st International Colloquium in Group Theoretical Methods in Physics (Rio de Janeiro, June 19-25, 2016), Editors Duarte S., Gazeau J.-P., Faci S., Micklitz T., Scherer R., Toppan F., Springer, Cham, 2017, 349-354, arXiv:1610.04797.
  7. De Bie H., Genest V.X., van de Vijver W., Vinet L., A higher rank Racah algebra and the ${\mathbb Z}^n_2$ Laplace-Dunkl operator, J. Phys. A: Math. Theor. 51 (2018), 025203, 20 pages, arXiv:1610.02638.
  8. De Bie H., Genest V.X., Vinet L., A Dirac-Dunkl equation on $S^2$ and the Bannai-Ito algebra, Comm. Math. Phys. 344 (2016), 447-464, arXiv:1501.03108.
  9. De Bie H., Genest V.X., Vinet L., The $\mathbb{Z}_2^n$ Dirac-Dunkl operator and a higher rank Bannai-Ito algebra, Adv. Math. 303 (2016), 390-414, arXiv:1511.02177.
  10. Genest V.X., Lapointe L., Vinet L., $\mathfrak{osp}(1,2)$ and generalized Bannai-Ito algebras, Trans. Amer. Math. Soc. 372 (2019), 4127-4148, arXiv:1705.03761.
  11. Genest V.X., Vinet L., Zhedanov A., The Bannai-Ito algebra and a superintegrable system with reflections on the two-sphere, J. Phys. A: Math. Theor. 47 (2014), 205202, 13 pages, arXiv:1401.1525.
  12. Genest V.X., Vinet L., Zhedanov A., The Bannai-Ito polynomials as Racah coefficients of the $\mathfrak{sl}_{-1}(2)$ algebra, Proc. Amer. Math. Soc. 142 (2014), 1545-1560, arXiv:1205.4215.
  13. Genest V.X., Vinet L., Zhedanov A., The equitable Racah algebra from three $\mathfrak{su}(1,1)$ algebras, J. Phys. A: Math. Theor. 47 (2014), 025203, 12 pages, arXiv:1309.3540.
  14. Genest V.X., Vinet L., Zhedanov A., The Racah algebra and superintegrable models, J. Phys. Conf. Ser. 512 (2014), 012011, 15 pages, arXiv:1312.3874.
  15. Genest V.X., Vinet L., Zhedanov A., Superintegrability in two dimensions and the Racah-Wilson algebra, Lett. Math. Phys. 104 (2014), 931-952, arXiv:1307.5539.
  16. Genest V.X., Vinet L., Zhedanov A., Embeddings of the Racah algebra into the Bannai-Ito algebra, SIGMA 11 (2015), 050, 11 pages, arXiv:1504.00558.
  17. Genest V.X., Vinet L., Zhedanov A., A Laplace-Dunkl equation on $S^2$ and the Bannai-Ito algebra, Comm. Math. Phys. 336 (2015), 243-259, arXiv:1312.6604.
  18. Genest V.X., Vinet L., Zhedanov A., The non-symmetric Wilson polynomials are the Bannai-Ito polynomials, Proc. Amer. Math. Soc. 144 (2016), 5217-5226, arXiv:1507.02995.
  19. Granovskiǐ Y.A., Zhedanov A.S., Nature of the symmetry group of the $6j$-symbol, Soviet Phys. JETP 94 (1988), 1982-1985.
  20. Granovskiǐ Y.I., Zhedanov A.S., Lutsenko I.M., Quadratic algebras and dynamical symmetry of the Schrödinger equation, Soviet Phys. JETP 99 (1991), 205-209.
  21. Huang H.W., Finite-dimensional modules of the Racah algebra and the additive DAHA of type $(C_1^\vee,C_1)$, arXiv:1906.09160.
  22. Huang H.W., Bockting-Conrad S., The Casimir elements of the Racah algebra, J. Algebra Appl., to appear, arXiv:1711.09574.
  23. Lévy-Leblond J.M., Lévy-Nahas M., Symmetrical coupling of three angular momenta, J. Math. Phys. 6 (1965), 1372-1380.
  24. Terwilliger P., The universal Askey-Wilson algebra, SIGMA 7 (2011), 069, 24 pages, arXiv:1104.2813.
  25. Terwilliger P., The universal Askey-Wilson algebra and DAHA of type $\big(C^\vee_1,C_1\big)$, SIGMA 9 (2013), 047, 40 pages, arXiv:1202.4673.
  26. Tsujimoto S., Vinet L., Zhedanov A., Dunkl shift operators and Bannai-Ito polynomials, Adv. Math. 229 (2012), 2123-2158, arXiv:1106.3512.

Previous article  Next article  Contents of Volume 16 (2020)