|
SIGMA 16 (2020), 074, 21 pages arXiv:2005.01059
https://doi.org/10.3842/SIGMA.2020.074
Contribution to the Special Issue on Elliptic Integrable Systems, Special Functions and Quantum Field Theory
The Endless Beta Integrals
Gor A. Sarkissian abc and Vyacheslav P. Spiridonov ac
a) Laboratory of Theoretical Physics, JINR, Dubna, 141980, Russia
b) Department of Physics, Yerevan State University, Yerevan, Armenia
c) St. Petersburg Department of the Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka 27, St. Petersburg, 191023 Russia
Received May 05, 2020, in final form July 24, 2020; Published online August 05, 2020; Equations (62), (69) and (72) corrected October 22, 2021
Abstract
We consider a special degeneration limit $\omega_1\to - \omega_2$ (or $b\to {\rm i}$ in the context of $2d$ Liouville quantum field theory) for the most general univariate hyperbolic beta integral. This limit is also applied to the most general hyperbolic analogue of the Euler-Gauss hypergeometric function and its $W(E_7)$ group of symmetry transformations. Resulting functions are identified as hypergeometric functions over the field of complex numbers related to the ${\rm SL}(2,\mathbb{C})$ group. A new similar nontrivial hypergeometric degeneration of the Faddeev modular quantum dilogarithm (or hyperbolic gamma function) is discovered in the limit $\omega_1\to \omega_2$ (or $b\to 1$).
Key words: elliptic hypergeometric functions; complex gamma function; beta integrals; star-triangle relation.
pdf (503 kb)
tex (30 kb)
[previous version:
pdf (480 kb)
tex (30 kb)]
References
- Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge, 1999.
- Aomoto K., On the complex Selberg integral, Quart. J. Math. Oxford 38 (1987), 385-399.
- Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), iv+55 pages.
- Bazhanov V.V., Mangazeev V.V., Sergeev S.M., Exact solution of the Faddeev-Volkov model, Phys. Lett. A 372 (2008), 1547-1550, arXiv:0706.3077.
- Chicherin D., Spiridonov V.P., The hyperbolic modular double and the Yang-Baxter equation, in Representation Theory, Special Functions and Painlevé equations - RIMS 2015, Adv. Stud. Pure Math., Vol. 76, Math. Soc. Japan, Tokyo, 2018, 95-123, arXiv:1511.00131.
- Derkachov S.É., Manashov A.N., On complex gamma-function integrals, SIGMA 16 (2020), 003, 20 pages, arXiv:1908.01530.
- Derkachov S.É., Manashov A.N., Valinevich P.A., Gustafson integrals for ${\rm SL}(2,{\mathbb C})$ spin magnet, J. Phys. A: Math. Theor. 50 (2017), 294007, 12 pages, arXiv:1612.00727.
- Derkachov S.É., Manashov A.N., Valinevich P.A., ${\rm SL}(2,{\mathbb C})$ Gustafson integrals, SIGMA 14 (2018), 030, 16 pages, arXiv:1711.07822.
- Derkachov S.É., Spiridonov V.P., The $6j$-symbols for the ${\rm SL}(2,{\mathbb C})$ group, Theoret. and Math. Phys. 198 (2019), 29-47, arXiv:1711.07073.
- Dimofte T., Complex Chern-Simons theory at level $k$ via the 3d-3d correspondence, Comm. Math. Phys. 339 (2015), 619-662, arXiv:1409.0857.
- Dotsenko V.S., Fateev V.A., Four-point correlation functions and the operator algebra in $2$D conformal invariant theories with central charge $C\leq 1$, Nuclear Phys. B 251 (1985), 691-734.
- Faddeev L.D., Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34 (1995), 249-254, arXiv:hep-th/9504111.
- Faddeev L.D., Currentlike variables in massive and massless integrable models, in Quantum Groups and their Applications in Physics (Varenna, 1994), Proc. Internat. School Phys. Enrico Fermi, Vol. 127, IOS, Amsterdam, 1996, 117-135, arXiv:hep-th/9408041.
- Faddeev L.D., Modular double of a quantum group, in Conférence Moshé Flato 1999, Vol. I (Dijon), Math. Phys. Stud., Vol. 21, Kluwer Acad. Publ., Dordrecht, 2000, 149-156, arXiv:math.QA/9912078.
- Gel'fand I.M., Graev M.I., Vilenkin N.J., Generalized functions, Vol. 5, Integral geometry and representation theory, Fizmatgiz, Moscow, 1962.
- Iorgov N., Lisovyy O., Tykhyy Yu., Painlevé VI connection problem and monodromy of $c=1$ conformal blocks, J. High Energy Phys. 2013 (2013), no. 12, 029, 27 pages, arXiv:1308.4092.
- Ismagilov R.S., Racah operators for principal series of representations of the group ${\rm SL}(2,{\mathbb C})$, Sb. Math. 198 (2007), 369-381.
- Kashaev R., Luo F., Vartanov G., A TQFT of Turaev-Viro type on shaped triangulations, Ann. Henri Poincaré 17 (2016), 1109-1143, arXiv:1210.8393.
- Kels A.P., A new solution of the star-triangle relation, J. Phys. A: Math. Theor. 47 (2014), 055203, 7 pages, arXiv:1302.3025.
- Kels A.P., Yamazaki M., Elliptic hypergeometric sum/integral transformations and supersymmetric lens index, SIGMA 14 (2018), 013, 29 pages, arXiv:1704.03159.
- Kharchev S., Lebedev D., Semenov-Tian-Shansky M., Unitary representations of $U_q({\mathfrak{gl}}(2,{\mathbb R}))$, the modular double and the multiparticle $q$-deformed Toda chains, Comm. Math. Phys. 225 (2002), 573-609, arXiv:hep-th/0102180.
- Koornwinder T.H., Jacobi functions as limit cases of $q$-ultraspherical polynomials, J. Math. Anal. Appl. 148 (1990), 44-54.
- Mimachi K., Complex hypergeometric integrals, in Representation Theory, Special Functions and Painlevé equations - RIMS 2015, Adv. Stud. Pure Math., Vol. 76, Math. Soc. Japan, Tokyo, 2018, 469-485.
- Molchanov V.F., Neretin Yu.A., A pair of commuting hypergeometric operators on the complex plane and bispectrality, J. Spectr. Theory 11 (2021), 509-586, arXiv:1812.06766.
- Naimark M.A., Decomposition of a tensor product of irreducible representations of the proper Lorentz group into irreducible representations, Amer. Math. Soc., Providence, RI, 1964, 101-229.
- Neretin Yu.A., An analog of the Dougall formula and of the de Branges-Wilson integral, Ramanujan J. 54 (2021), 93-106, arXiv:1812.07341.
- Neretin Yu.A., Barnes-Ismagilov integrals and hypergeometric functions of the complex field, SIGMA 16 (2020), 072, 20 pages, arXiv:1910.10686.
- Rahman M., An integral representation of a $_{10}\varphi_9$ and continuous bi-orthogonal $_{10}\varphi_9$ rational functions, Canad. J. Math. 38 (1986), 605-618.
- Rains E.M., Limits of elliptic hypergeometric integrals, Ramanujan J. 18 (2009), 257-306, arXiv:math.CA/0607093.
- Ruijsenaars S.N.M., A generalized hypergeometric function satisfying four analytic difference equations of Askey-Wilson type, Comm. Math. Phys. 206 (1999), 639-690.
- Runkel I., Watts G.M.T., A nonrational CFT with $c = 1$ as a limit of minimal models, J. High Energy Phys. 2001 (2001), no. 9, 006, 41 pages, arXiv:hep-th/0107118.
- Sarkissian G.A., Spiridonov V.P., The modular group and a hyperbolic beta integral, Russian Math. Surveys 75 (2020), 187-188.
- Sarkissian G.A., Spiridonov V.P., General modular quantum dilogarithm and beta integrals, Proc. Steklov Inst. Math. 309 (2020), 251-270, arXiv:1910.11747.
- Spiridonov V.P., On the elliptic beta function, Russian Math. Surveys 56 (2001), 185-186.
- Spiridonov V.P., Theta hypergeometric integrals, St. Petersburg Math. J. 15 (2004), 929-967, arXiv:math.CA/0303205.
- Spiridonov V.P., Essays on the theory of elliptic hypergeometric functions, Russian Math. Surveys 63 (2008), 405-472, arXiv:0805.3135.
- Spiridonov V.P., Elliptic beta integrals and solvable models of statistical mechanics, in Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemp. Math., Vol. 563, Amer. Math. Soc., Providence, RI, 2012, 181-211, arXiv:1011.3798.
- Spiridonov V.P., Rarefied elliptic hypergeometric functions, Adv. Math. 331 (2018), 830-873, arXiv:1609.00715.
- Spiridonov V.P., The rarefied elliptic Bailey lemma and the Yang-Baxter equation, J. Phys. A: Math. Theor. 52 (2019), 355201, 15 pages, arXiv:1904.12046.
- Stokman J.V., Hyperbolic beta integrals, Adv. Math. 190 (2004), 119-160, arXiv:math.QA/0303178.
- van de Bult F.J., Rains E.M., Stokman J.V., Properties of generalized univariate hypergeometric functions, Comm. Math. Phys. 275 (2007), 37-95, arXiv:math.CA/0607250.
- van Diejen J.F., Spiridonov V.P., Unit circle elliptic beta integrals, Ramanujan J. 10 (2005), 187-204, arXiv:math.CA/0309279.
|
|