Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 070, 49 pages      arXiv:1910.12348      https://doi.org/10.3842/SIGMA.2020.070
Contribution to the Special Issue on Integrability, Geometry, Moduli in honor of Motohico Mulase for his 65th birthday

Motivic Donaldson-Thomas Invariants of Parabolic Higgs Bundles and Parabolic Connections on a Curve

Roman Fedorov a, Alexander Soibelman b and Yan Soibelman c
a)  University of Pittsburgh, Pittsburgh, PA, USA
b)  Aarhus University, Aarhus, Denmark
c)  Kansas State University, Manhattan, KS, USA

Received November 19, 2019, in final form July 10, 2020; Published online July 27, 2020

Abstract
Let $X$ be a smooth projective curve over a field of characteristic zero and let $D$ be a non-empty set of rational points of $X$. We calculate the motivic classes of moduli stacks of semistable parabolic bundles with connections on $(X,D)$ and motivic classes of moduli stacks of semistable parabolic Higgs bundles on $(X,D)$. As a by-product we give a criteria for non-emptiness of these moduli stacks, which can be viewed as a version of the Deligne-Simpson problem.

Key words: parabolic Higgs bundles; parabolic bundles with connections; motivic classes; Donaldson-Thomas invariants; Macdonald polynomials.

pdf (723 kb)   tex (58 kb)  

References

  1. Atiyah M.F., On the Krull-Schmidt theorem with application to sheaves, Bull. Soc. Math. France 84 (1956), 307-317.
  2. Atiyah M.F., Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181-207.
  3. Behrend K., Dhillon A., On the motivic class of the stack of bundles, Adv. Math. 212 (2007), 617-644.
  4. Biquard O., Fibrés de Higgs et connexions intégrables: le cas logarithmique (diviseur lisse), Ann. Sci. École Norm. Sup. (4) 30 (1997), 41-96.
  5. Biquard O., Boalch P., Wild non-abelian Hodge theory on curves, Compos. Math. 140 (2004), 179-204, arXiv:math.DG/0111098.
  6. Chuang W.-Y., Diaconescu D.-E., Donagi R., Pantev T., Parabolic refined invariants and Macdonald polynomials, Comm. Math. Phys. 335 (2015), 1323-1379, arXiv:1311.3624.
  7. Crawley-Boevey W., Indecomposable parabolic bundles and the existence of matrices in prescribed conjugacy class closures with product equal to the identity, Publ. Math. Inst. Hautes Études Sci. 100 (2004), 171-207, arXiv:math.AG/0307246.
  8. Crawley-Boevey W., Kac's theorem for weighted projective lines, J. Eur. Math. Soc. (JEMS) 12 (2010), 1331-1345, arXiv:math.AG/0512078.
  9. Dobrovolska G., Ginzburg V., Travkin R., Moduli spaces, indecomposable objects and potentials over a finite field, arXiv:1612.01733.
  10. Ekedahl T., A geometric invariant of a finite group, arXiv:0903.3148.
  11. Ekedahl T., The Grothendieck group of algebraic stacks, arXiv:0903.3143.
  12. Fedorov R., Soibelman A., Soibelman Y., Motivic classes of moduli of Higgs bundles and moduli of bundles with connections, Commun. Number Theory Phys. 12 (2018), 687-766, arXiv:1705.04890.
  13. Garsia A.M., Haiman M., A remarkable $q,t$-Catalan sequence and $q$-Lagrange inversion, J. Algebraic Combin. 5 (1996), 191-244.
  14. Haglund J., Haiman M., Loehr N., A combinatorial formula for Macdonald polynomials, J. Amer. Math. Soc. 18 (2005), 735-761, arXiv:math.CO/0409538.
  15. Harder G., Chevalley groups over function fields and automorphic forms, Ann. of Math. 100 (1974), 249-306.
  16. Harder G., Narasimhan M.S., On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1975), 215-248.
  17. Hoskins V., Lehalleur S.P., On the Voevodsky motive of the moduli space of Higgs bundles on a curve, arXiv:1910.04440.
  18. Hoskins V., Schaffhauser F., Rational points of quiver moduli spaces, arXiv:1704.08624.
  19. Joyce D., Motivic invariants of Artin stacks and `stack functions', Q. J. Math. 58 (2007), 345-392, arXiv:math.AG/0509722.
  20. Kac V.G., Infinite root systems, representations of graphs and invariant theory. II, J. Algebra 78 (1982), 141-162.
  21. Kapranov M., The elliptic curve in the $S$-duality theory and Eisenstein series for Kac-Moody groups, arXiv:math.AG/0001005.
  22. Kontsevich M., Soibelman Y., Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435.
  23. Kontsevich M., Soibelman Y., Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys. 5 (2011), 231-352, arXiv:1006.2706.
  24. Kostov V.P., The Deligne-Simpson problem - a survey, J. Algebra 281 (2004), 83-108, arXiv:math.RA/0206298.
  25. Kresch A., Cycle groups for Artin stacks, Invent. Math. 138 (1999), 495-536, arXiv:math.AG/9810166.
  26. Larsen M., Lunts V.A., Rationality criteria for motivic zeta functions, Compos. Math. 140 (2004), 1537-1560, arXiv:math.AG/0212158.
  27. Laumon G., Moret-Bailly L., Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Vol. 39, Springer-Verlag, Berlin, 2000.
  28. Macdonald I.G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979.
  29. Mellit A., Integrality of Hausel-Letellier-Villegas kernels, Duke Math. J. 167 (2018), 3171-3205, arXiv:1605.01299.
  30. Mellit A., Poincaré polynomials of character varieties, Macdonald polynomials and affine Springer fibers, Ann. of Math. 192 (2020), 165-228, arXiv:1710.04513.
  31. Mellit A., Poincaré polynomials of moduli spaces of Higgs bundles and character varieties (no punctures), Invent. Math. 221 (2020), 301-327, arXiv:1707.04214.
  32. Mihai A., Sur le résidu et la monodromie d'une connexion méromorphe, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), Aii, A435-A438.
  33. Mihai A., Sur les connexions méromorphes, Rev. Roumaine Math. Pures Appl. 23 (1978), 215-232.
  34. Mozgovoy S., Schiffmann O., Counting Higgs bundles, arXiv:1411.2101.
  35. Nakajima H., Hyper-Kähler structures on moduli spaces of parabolic Higgs bundles on Riemann surfaces, in Moduli of Vector Bundles (Sanda, 1994; Kyoto, 1994), Lecture Notes in Pure and Appl. Math., Vol. 179, Dekker, New York, 1996, 199-208.
  36. Ren J., Soibelman Y., Cohomological Hall algebras, semicanonical bases and Donaldson-Thomas invariants for 2-dimensional Calabi-Yau categories (with an appendix by Ben Davison), in Algebra, Geometry, and Physics in the 21st Century, Progr. Math., Vol. 324, Birkhäuser/Springer, Cham, 2017, 261-293, arXiv:1508.06068.
  37. Schiffmann O., Indecomposable vector bundles and stable Higgs bundles over smooth projective curves, Ann. of Math. 183 (2016), 297-362, arXiv:1406.3839.
  38. Serre J.-P., Algebraic groups and class fields, Graduate Texts in Mathematics, Vol. 117, Springer-Verlag, New York, 1988.
  39. Simpson C.T., Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), 713-770.
  40. Simpson C.T., Products of matrices, in Differential Geometry, Global Analysis, and Topology (Halifax, NS, 1990), CMS Conf. Proc., Vol. 12, Amer. Math. Soc., Providence, RI, 1991, 157-185.
  41. Simpson C.T., Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. (1994), 47-129.
  42. Simpson C.T., Katz's middle convolution algorithm, Pure Appl. Math. Q. 5 (2009), 781-852, arXiv:math.AG/0610526.
  43. Sorger C., Lectures on moduli of principal $G$-bundles over algebraic curves, in School on Algebraic Geometry (Trieste, 1999), ICTP Lect. Notes, Vol. 1, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2000, 1-57.

Previous article  Next article  Contents of Volume 16 (2020)