|
SIGMA 16 (2020), 066, 15 pages arXiv:2003.11127
https://doi.org/10.3842/SIGMA.2020.066
Dendriform Algebras Relative to a Semigroup
Marcelo Aguiar
Department of Mathematics, Cornell University, Ithaca, NY 14853, USA
Received April 09, 2020, in final form June 29, 2020; Published online July 11, 2020
Abstract
Loday's dendriform algebras and its siblings pre-Lie and zinbiel have received attention over the past two decades. In recent literature, there has been interest in a generalization of these types of algebra in which each individual operation is replaced by a family of operations indexed by a fixed semigroup $S$. The purpose of this note is twofold. First, we add to the existing work by showing that a similar extension is possible already for the most familiar types of algebra: commutative, associative, and Lie. Second, we show that these concepts arise naturally and in a unified manner from a categorical perspective. For this, one simply has to consider the standard types of algebra but in reference to the monoidal category of $S$-graded vector spaces.
Key words: dendriform algebra; monoidal category; dimonoidal category.
pdf (377 kb)
tex (20 kb)
References
- Aguiar M., Pre-Poisson algebras, Lett. Math. Phys. 54 (2000), 263-277.
- Aguiar M., Mahajan S., Monoidal functors, species and Hopf algebras, CRM Monograph Series, Vol. 29, Amer. Math. Soc., Providence, RI, 2010.
- Bai C., Bellier O., Guo L., Ni X., Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Not. 2013 (2013), 485-524, arXiv:1106.6080.
- Chapoton F., Un endofoncteur de la catégorie des opérades, in Dialgebras and Related Operads, Lecture Notes in Math., Vol. 1763, Springer, Berlin, 2001, 105-110.
- Cockett J.R.B., Seely R.A.G., Weakly distributive categories, in Applications of Categories in Computer Science (Durham, 1991), London Math. Soc. Lecture Note Ser., Vol. 177, Cambridge University Press, Cambridge, 1992, 45-65.
- Cockett J.R.B., Seely R.A.G., Weakly distributive categories, J. Pure Appl. Algebra 114 (1997), 133-173.
- Cockett J.R.B., Seely R.A.G., Linearly distributive functors, J. Pure Appl. Algebra 143 (1999), 155-203.
- Ebrahimi-Fard K., Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys. 61 (2002), 139-147, arXiv:math-ph/0207043.
- Ebrahimi-Fard K., Gracia-Bondía J.M., Patras F., A Lie theoretic approach to renormalization, Comm. Math. Phys. 276 (2007), 519-549, arXiv:hep-th/0609035.
- Foissy L., Generalized dendriform algebras and typed binary trees, arXiv:2002.12120.
- Gerstenhaber M., The cohomology structure of an associative ring, Ann. of Math. 78 (1963), 267-288.
- Gubarev V.Yu., Kolesnikov P.S., Embedding of dendriform algebras into Rota-Baxter algebras, Cent. Eur. J. Math. 11 (2013), 226-245, arXiv:1107.6021.
- Gubarev V.Yu., Kolesnikov P.S., Operads of decorated trees and their duals, Comment. Math. Univ. Carolin. 55 (2014), 421-445, arXiv:1401.3534.
- Guo L., Operated semigroups, Motzkin paths and rooted trees, J. Algebraic Combin. 29 (2009), 35-62, arXiv:0710.0429.
- Joyal A., Street R., Braided tensor categories, Adv. Math. 102 (1993), 20-78.
- Kassel C., Quantum groups, Graduate Texts in Mathematics, Vol. 155, Springer-Verlag, New York, 1995.
- Loday J.-L., Dialgebras, in Dialgebras and Related Operads, Lecture Notes in Math., Vol. 1763, Springer, Berlin, 2001, 7-66, arXiv:math.QA/0102053.
- Loday J.-L., Ronco M., Trialgebras and families of polytopes, in Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory, Contemp. Math., Vol. 346, Amer. Math. Soc., Providence, RI, 2004, 369-398, arXiv:math.AT/0205043.
- Mac Lane S., Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York, 1998.
- Manchon D., Zhang Y., Free pre-Lie family algebras, arXiv:2003.00917.
- Street R., Monoidal categories in, and linking, geometry and algebra, Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 769-821.
- Vinberg É.B., The theory of homogeneous convex cones, Trudy Moskov. Mat. Obvsč. 12 (1963), 303-358.
- Zhang Y., Gao X., Free Rota-Baxter family algebras and (tri)dendriform family algebras, Pacific J. Math. 301 (2019), 741-766.
- Zhang Y., Gao X., Guo L., Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras, J. Algebra 552 (2020), 134-170, arXiv:1909.10577.
- Zhang Y., Gao X., Manchon D., Free (tri)dendriform family algebras, J. Algebra 547 (2020), 456-493, arXiv:1909.08946.
- Zhang Y., Gao X., Manchon D., Free Rota-Baxter family algebras and free (tri)dendriform family algebras, arXiv:2002.04448.
|
|