Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 066, 15 pages      arXiv:2003.11127      https://doi.org/10.3842/SIGMA.2020.066

Dendriform Algebras Relative to a Semigroup

Marcelo Aguiar
Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

Received April 09, 2020, in final form June 29, 2020; Published online July 11, 2020

Abstract
Loday's dendriform algebras and its siblings pre-Lie and zinbiel have received attention over the past two decades. In recent literature, there has been interest in a generalization of these types of algebra in which each individual operation is replaced by a family of operations indexed by a fixed semigroup $S$. The purpose of this note is twofold. First, we add to the existing work by showing that a similar extension is possible already for the most familiar types of algebra: commutative, associative, and Lie. Second, we show that these concepts arise naturally and in a unified manner from a categorical perspective. For this, one simply has to consider the standard types of algebra but in reference to the monoidal category of $S$-graded vector spaces.

Key words: dendriform algebra; monoidal category; dimonoidal category.

pdf (377 kb)   tex (20 kb)  

References

  1. Aguiar M., Pre-Poisson algebras, Lett. Math. Phys. 54 (2000), 263-277.
  2. Aguiar M., Mahajan S., Monoidal functors, species and Hopf algebras, CRM Monograph Series, Vol. 29, Amer. Math. Soc., Providence, RI, 2010.
  3. Bai C., Bellier O., Guo L., Ni X., Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Not. 2013 (2013), 485-524, arXiv:1106.6080.
  4. Chapoton F., Un endofoncteur de la catégorie des opérades, in Dialgebras and Related Operads, Lecture Notes in Math., Vol. 1763, Springer, Berlin, 2001, 105-110.
  5. Cockett J.R.B., Seely R.A.G., Weakly distributive categories, in Applications of Categories in Computer Science (Durham, 1991), London Math. Soc. Lecture Note Ser., Vol. 177, Cambridge University Press, Cambridge, 1992, 45-65.
  6. Cockett J.R.B., Seely R.A.G., Weakly distributive categories, J. Pure Appl. Algebra 114 (1997), 133-173.
  7. Cockett J.R.B., Seely R.A.G., Linearly distributive functors, J. Pure Appl. Algebra 143 (1999), 155-203.
  8. Ebrahimi-Fard K., Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys. 61 (2002), 139-147, arXiv:math-ph/0207043.
  9. Ebrahimi-Fard K., Gracia-Bondía J.M., Patras F., A Lie theoretic approach to renormalization, Comm. Math. Phys. 276 (2007), 519-549, arXiv:hep-th/0609035.
  10. Foissy L., Generalized dendriform algebras and typed binary trees, arXiv:2002.12120.
  11. Gerstenhaber M., The cohomology structure of an associative ring, Ann. of Math. 78 (1963), 267-288.
  12. Gubarev V.Yu., Kolesnikov P.S., Embedding of dendriform algebras into Rota-Baxter algebras, Cent. Eur. J. Math. 11 (2013), 226-245, arXiv:1107.6021.
  13. Gubarev V.Yu., Kolesnikov P.S., Operads of decorated trees and their duals, Comment. Math. Univ. Carolin. 55 (2014), 421-445, arXiv:1401.3534.
  14. Guo L., Operated semigroups, Motzkin paths and rooted trees, J. Algebraic Combin. 29 (2009), 35-62, arXiv:0710.0429.
  15. Joyal A., Street R., Braided tensor categories, Adv. Math. 102 (1993), 20-78.
  16. Kassel C., Quantum groups, Graduate Texts in Mathematics, Vol. 155, Springer-Verlag, New York, 1995.
  17. Loday J.-L., Dialgebras, in Dialgebras and Related Operads, Lecture Notes in Math., Vol. 1763, Springer, Berlin, 2001, 7-66, arXiv:math.QA/0102053.
  18. Loday J.-L., Ronco M., Trialgebras and families of polytopes, in Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory, Contemp. Math., Vol. 346, Amer. Math. Soc., Providence, RI, 2004, 369-398, arXiv:math.AT/0205043.
  19. Mac Lane S., Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York, 1998.
  20. Manchon D., Zhang Y., Free pre-Lie family algebras, arXiv:2003.00917.
  21. Street R., Monoidal categories in, and linking, geometry and algebra, Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 769-821.
  22. Vinberg É.B., The theory of homogeneous convex cones, Trudy Moskov. Mat. Obvsč. 12 (1963), 303-358.
  23. Zhang Y., Gao X., Free Rota-Baxter family algebras and (tri)dendriform family algebras, Pacific J. Math. 301 (2019), 741-766.
  24. Zhang Y., Gao X., Guo L., Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras, J. Algebra 552 (2020), 134-170, arXiv:1909.10577.
  25. Zhang Y., Gao X., Manchon D., Free (tri)dendriform family algebras, J. Algebra 547 (2020), 456-493, arXiv:1909.08946.
  26. Zhang Y., Gao X., Manchon D., Free Rota-Baxter family algebras and free (tri)dendriform family algebras, arXiv:2002.04448.

Previous article  Next article  Contents of Volume 16 (2020)