|
SIGMA 16 (2020), 065, 14 pages arXiv:1907.02925
https://doi.org/10.3842/SIGMA.2020.065
Solvable Lie Algebras of Vector Fields and a Lie's Conjecture
Katarzyna Grabowska a and Janusz Grabowski b
a) Faculty of Physics, University of Warsaw, Poland
b) Institute of Mathematics, Polish Academy of Sciences, Poland
Received February 04, 2020, in final form July 02, 2020; Published online July 10, 2020
Abstract
We present a local and constructive differential geometric description of finite-dimensional solvable and transitive Lie algebras of vector fields. We show that it implies a Lie's conjecture for such Lie algebras. Also infinite-dimensional analytical solvable and transitive Lie algebras of vector fields whose derivative ideal is nilpotent can be adapted to this scheme.
Key words: vector field; nilpotent Lie algebra; solvable Lie algebra; dilation; foliation.
pdf (366 kb)
tex (21 kb)
References
- Blattner R.J., Induced and produced representations of Lie algebras, Trans. Amer. Math. Soc. 144 (1969), 457-474.
- Bruce A.J., Grabowska K., Grabowski J., Linear duals of graded bundles and higher analogues of (Lie) algebroids, J. Geom. Phys. 101 (2016), 71-99, arXiv:1409.0439.
- Cariñena J.F., Falceto F., Grabowski J., Solvability of a Lie algebra of vector fields implies their integrability by quadratures, J. Phys. A: Math. Theor. 49 (2016), 425202, 13 pages, arXiv:1606.02472.
- Cariñena J.F., Falceto F., Grabowski J., Rañada M.F., Geometry of Lie integrability by quadratures, J. Phys. A: Math. Theor. 48 (2015), 215206, 18 pages, arXiv:1409.7549.
- Cartan E., Sur la structure des groupes de transformations finis et continus, Thesis (Paris, Nony 1894), 2nd ed., Vuibert, Paris, 1933.
- Draisma J., Lie algebras of vector fields, Ph.D. Thesis, Technische Universiteit Eindhoven, 2002, available at https://doi.org/10.6100/IR555019.
- Draisma J., On a conjecture of Sophus Lie, in Differential Equations and the Stokes Phenomenon, World Sci. Publ., River Edge, NJ, 2002, 65-87.
- Draisma J., Transitive Lie algebras of vector fields: an overview, Qual. Theory Dyn. Syst. 11 (2012), 39-60, arXiv:1107.2836.
- Gantmacher F., On the classification of real simple Lie groups, Rec. Math. 5 (1939), 217-250.
- González-López A., Kamran N., Olver P.J., Lie algebras of vector fields in the real plane, Proc. London Math. Soc. 64 (1992), 339-368.
- Grabowski J., Remarks on nilpotent Lie algebras of vector fields, J. Reine Angew. Math. 406 (1990), 1-4.
- Grabowski J., Rotkiewicz M., Higher vector bundles and multi-graded symplectic manifolds, J. Geom. Phys. 59 (2009), 1285-1305, arXiv:math.DG/0702772.
- Grabowski J., Rotkiewicz M., Graded bundles and homogeneity structures, J. Geom. Phys. 62 (2012), 21-36, arXiv:1102.0180.
- Guillemin V.W., Sternberg S., An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc. 70 (1964), 16-47.
- Kawski M., Nilpotent Lie algebras of vectorfields, J. Reine Angew. Math. 388 (1988), 1-17.
- Lie S., Theorie der Transformationsgruppen I, Math. Ann. 16 (1880), 441-528.
- Lie S., Gruppenregister, Gesammelte Abhandlungen, Vol. 5, B.G. Teubner, Leipzig, 1924.
- Lie S., Engel F., Transformationsgruppen, B.G. Teubner, Leipzig, 1893.
- Magazev A.A., Mikheyev V.V., Shirokov I.V., Computation of composition functions and invariant vector fields in terms of structure constants of associated Lie algebras, SIGMA 11 (2015), 066, 17 pages, arXiv:1312.0362.
- Mubarakzjanov G.M., Classification of solvable Lie algebras of sixth order with a non-nilpotent basis element, Izv. Vyssh. Uchebn. Zaved. Mat. (1963), no. 4(35), 104-116.
- Nagano T., Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan 18 (1966), 398-404.
- Palais R.S., A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. 22 (1957), iii+123 pages.
- Popovych R.O., Boyko V.M., Nesterenko M.O., Lutfullin M.W., Realizations of real low-dimensional Lie algebras, J. Phys. A: Math. Gen. 36 (2003), 7337-7360, arXiv:math-ph/0301029.
- Safiullina E.N., Classification of nilpotent Lie algebras of order $7$, Ph.D. Thesis, Kazan University, Kazan, 1964.
- Schneider E., Projectable Lie algebras of vector fields in 3D, J. Geom. Phys. 132 (2018), 222-229, arXiv:1803.08878.
- Tsagas G., Classification of nilpotent Lie algebras of dimension eight, J. Inst. Math. Comput. Sci. Math. Ser. 12 (1999), 179-183.
- Turkowski P., Solvable Lie algebras of dimension six, J. Math. Phys. 31 (1990), 1344-1350.
- Voronov Th.Th., $Q$-manifolds and higher analogs of Lie algebroids, in XXIX Workshop on Geometric Methods in Physics, AIP Conf. Proc., Vol. 1307, Amer. Inst. Phys., Melville, NY, 2010, 191-202, arXiv:1010.2503.
- Šnobl L., Winternitz P., Classification and identification of Lie algebras, CRM Monograph Series, Vol. 33, Amer. Math. Soc., Providence, RI, 2014.
|
|