|
SIGMA 16 (2020), 064, 10 pages arXiv:2005.02604
https://doi.org/10.3842/SIGMA.2020.064
Contribution to the Special Issue on Scalar and Ricci Curvature in honor of Misha Gromov on his 75th Birthday
The Bochner Technique and Weighted Curvatures
Peter Petersen and Matthias Wink
Department of Mathematics, University of California, 520 Portola Plaza, Los Angeles, CA, 90095, USA
Received May 22, 2020, in final form June 29, 2020; Published online July 09, 2020
Abstract
In this note we study the Bochner formula on smooth metric measure spaces. We introduce weighted curvature conditions that imply vanishing of all Betti numbers.
Key words: Bochner technique; smooth metric measure spaces; Hodge theory.
pdf (288 kb)
tex (12 kb)
References
- Bakry D., Émery M., Diffusions hypercontractives, in Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., Vol. 1123, Springer, Berlin, 1985, 177-206.
- Bakry D., Qian Z., Volume comparison theorems without Jacobi fields, in Current Trends in Potential Theory, Theta Ser. Adv. Math., Vol. 4, Theta, Bucharest, 2005, 115-122.
- Lichnerowicz A., Variétés riemanniennes à tenseur C non négatif, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A650-A653.
- Lott J., Some geometric properties of the Bakry-Émery-Ricci tensor, Comment. Math. Helv. 78 (2003), 865-883, arXiv:math.DG/0211065.
- Petersen P., Riemannian geometry, 3rd ed., Graduate Texts in Mathematics, Vol. 171, Springer, Cham, 2016.
- Petersen P., Wink M., New curvature conditions for the Bochner technique, arXiv:1908.09958v3.
- Qian Z., Estimates for weighted volumes and applications, Quart. J. Math. Oxford 48 (1997), 235-242.
- Wei G., Wylie W., Comparison geometry for the Bakry-Émery Ricci tensor, J. Differential Geom. 83 (2009), 377-405, arXiv:0706.1120.
|
|