Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 050, 21 pages      arXiv:1912.01225      https://doi.org/10.3842/SIGMA.2020.050

On the Notion of Noncommutative Submanifold

Francesco D'Andrea
Università di Napoli ''Federico II'' and I.N.F.N. Sezione di Napoli, Complesso MSA, Via Cintia, 80126 Napoli, Italy

Received January 11, 2020, in final form May 30, 2020; Published online June 09, 2020

Abstract
We review the notion of submanifold algebra, as introduced by T. Masson, and discuss some properties and examples. A submanifold algebra of an associative algebra $A$ is a quotient algebra $B$ such that all derivations of $B$ can be lifted to $A$. We will argue that in the case of smooth functions on manifolds every quotient algebra is a submanifold algebra, derive a topological obstruction when the algebras are deformation quantizations of symplectic manifolds, present some (commutative and noncommutative) examples and counterexamples.

Key words: submanifold algebras; tangential star products; coisotropic reduction.

pdf (485 kb)   tex (31 kb)  

References

  1. Arnlind J., Norkvist A.T., Noncommutative minimal embeddings and morphisms of pseudo-Riemannian calculi, arXiv:1906.03885.
  2. Bieliavsky P., Gutt S., Bordemann M., Waldmann S., Traces for star products on the dual of a Lie algebra, Rev. Math. Phys. 15 (2003), 425-445, arXiv:math.QA/0202126.
  3. Billig Y., Futorny V., Lie algebras of vector fields on smooth affine varieties, Comm. Algebra 46 (2018), 3413-3429, arXiv:1705.05900.
  4. Blackadar B., Operator algebras. Theory of $C^*$-algebras and von Neumann algebras, Encyclopaedia of Mathematical Sciences, Vol. 122, Springer-Verlag, Berlin, 2006.
  5. Bordemann M., (Bi)modules, morphisms, and reduction of star-products: the symplectic case, foliations, and obstructions, Trav. Math., Vol. 16, University of Luxembourg, Luxembourg, 2005, 9-40.
  6. Carotenuto A., Dąbrowski L., Spin geometry of the rational noncommutative torus, J. Geom. Phys. 144 (2019), 28-42, arXiv:1804.06803.
  7. Cattaneo A.S., Felder G., Relative formality theorem and quantisation of coisotropic submanifolds, Adv. Math. 208 (2007), 521-548, arXiv:math.QA/0501540.
  8. Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
  9. Connes A., Marcolli M., Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, Vol. 55, Amer. Math. Soc., Providence, RI, 2008.
  10. De Nicola A., Esposito C., Reduction of pre-Hamiltonian actions, J. Geom. Phys. 115 (2017), 178-190, arXiv:1507.08821.
  11. Dippell M., Esposito C., Waldmann S., Coisotropic triples, reduction and classical limit, Doc. Math. 24 (2019), 1811-1853, arXiv:1812.09703.
  12. Dixmier J., Enveloping algebras, North-Holland Mathematical Library, Vol. 14, North-Holland Publishing Co., Amsterdam - New York - Oxford, 1977.
  13. Drozd Yu.A., Kirichenko V.V., Finite-dimensional algebras, Springer-Verlag, Berlin, 1994.
  14. Dubois-Violette M., Dérivations et calcul différentiel non commutatif, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 403-408.
  15. Dubois-Violette M., Noncommutative differential geometry, quantum mechanics and gauge theory, in Differential Geometric Methods in Theoretical Physics (Rapallo, 1990), Editors C. Bartocci, U. Bruzzo, R. Cianci, Lecture Notes in Phys., Vol. 375, Springer, Berlin, 1991, 13-24.
  16. Dubois-Violette M., Lectures on graded differential algebras and noncommutative geometry, in Noncommutative Differential Geometry and its Applications to Physics (Shonan, 1999), Editors Y. Maeda, H. Moriyoshi, H. Omori, D. Sternheimer, T. Tate, S. Watamura, Math. Phys. Stud., Vol. 23, Kluwer Acad. Publ., Dordrecht, 2001, 245-306, arXiv:math.QA/9912017.
  17. Dubois-Violette M., Michor P.W., Dérivations et calcul différentiel non commutatif. II, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 927-931, arXiv:hep-th/9406166.
  18. Eisenbud D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, Vol. 150, Springer-Verlag, New York, 1995.
  19. Filippini R.J., The symplectic geometry of the theorems of Borel-Weil andPeter-Weyl, Ph.D. Thesis, University of California, Berkeley, 1995.
  20. Fiore G., Franco D., Weber T., Twisted quadrics and algebraic submanifolds in $\mathbb R^n$, arXiv:2005.03509.
  21. Fiore G., Weber T., Twisted submanifolds of $\mathbb R^n$, arXiv:2003.03854.
  22. Gloessner P., Star product reduction for coisotropic submanifolds of codimension 1, arXiv:math.QA/9805049.
  23. Gracia-Bondía J.M., Várilly J.C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston, Inc., Boston, MA, 2001.
  24. Greub W., Halperin S., Vanstone R., Connections, curvature, and cohomology, Vol. I, De Rham cohomology of manifolds and vector bundles, Pure and Applied Mathematics, Vol. 47, Academic Press, New York - London, 1972.
  25. Gutt S., Rawnsley J., Equivalence of star products on a symplectic manifold; an introduction to Deligne's Čech cohomology classes, J. Geom. Phys. 29 (1999), 347-392.
  26. Iglesias-Zemmour P., Diffeology, Mathematical Surveys and Monographs, Vol. 185, Amer. Math. Soc., Providence, RI, 2013.
  27. Kadison R.V., Derivations of operator algebras, Ann. of Math. 83 (1966), 280-293.
  28. Kolář I., Michor P.W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993.
  29. Lê H.V., Oh Y.G., Tortorella A.G., Vitagliano L., Deformations of coisotropic submanifolds in Jacobi manifolds, J. Symplectic Geom. 16 (2018), 1051-1116, arXiv:1410.8446.
  30. Lee J.M., Introduction to smooth manifolds, 2nd ed., Graduate Texts in Mathematics, Vol. 218, Springer, New York, 2013.
  31. Majid S., Ruegg H., Bicrossproduct structure of $\kappa$-Poincaré group and non-commutative geometry, Phys. Lett. B 334 (1994), 348-354, arXiv:hep-th/9405107.
  32. Masson T., Submanifolds and quotient manifolds in noncommutative geometry, J. Math. Phys. 37 (1996), 2484-2497, arXiv:q-alg/9507030.
  33. Michor P.W., Vanvzura J., Characterizing algebras of $C^\infty$-functions on manifolds, Comment. Math. Univ. Carolin. 37 (1996), 519-521, arXiv:math.GT/9404228.
  34. Moerdijk I., Reyes G.E., Models for smooth infinitesimal analysis, Springer-Verlag, New York, 1991.
  35. Pedersen G.K., Lifting derivations from quotients of separable $C^*$-algebras, Proc. Nat. Acad. Sci. USA 73 (1976), 1414-1415.
  36. Sakai S., Derivations of $W^{\ast} $-algebras, Ann. of Math. 83 (1966), 273-279.
  37. Sharygin G., Deformation quantization and the action of Poisson vector fields, Lobachevskii J. Math. 38 (2017), 1093-1107, arXiv:1612.02673.
  38. van Suijlekom W.D., Noncommutative geometry and particle physics, Mathematical Physics Studies, Springer, Dordrecht, 2015.
  39. Weber T., Braided Cartan calculi and submanifold algebras, J. Geom. Phys. 150 (2020), 103612, 24 pages, arXiv:1907.13609.

Previous article  Next article  Contents of Volume 16 (2020)