|
SIGMA 16 (2020), 044, 17 pages arXiv:1909.13002
https://doi.org/10.3842/SIGMA.2020.044
Higher Rank $\hat{Z}$ and $F_K$
Sunghyuk Park
California Institute of Technology, Pasadena, USA
Received January 15, 2020, in final form May 11, 2020; Published online May 24, 2020
Abstract
We study $q$-series-valued invariants of 3-manifolds that depend on the choice of a root system $G$. This is a natural generalization of the earlier works by Gukov-Pei-Putrov-Vafa [arXiv:1701.06567] and Gukov-Manolescu [arXiv:1904.06057] where they focused on $G={\rm SU}(2)$ case. Although a full mathematical definition for these ''invariants'' is lacking yet, we define $\hat{Z}^G$ for negative definite plumbed 3-manifolds and $F_K^G$ for torus knot complements. As in the $G={\rm SU}(2)$ case by Gukov and Manolescu, there is a surgery formula relating $F_K^G$ to $\hat{Z}^G$ of a Dehn surgery on the knot $K$. Furthermore, specializing to symmetric representations, $F_K^G$ satisfies a recurrence relation given by the quantum $A$-polynomial for symmetric representations, which hints that there might be HOMFLY-PT analogues of these 3-manifold invariants.
Key words: 3-manifold; knot; quantum invariant; complex Chern-Simons theory; TQFT; $q$-series; colored Jones polynomial; colored HOMFLY-PT polynomial.
pdf (510.0 KB)
tex (23.0 KB)
References
- Bakalov B., Kirillov Jr. A., Lectures on tensor categories and modular functors, University Lecture Series, Vol. 21, Amer. Math. Soc., Providence, RI, 2001.
- Bar-Natan D., Garoufalidis S., On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996), 103-133.
- Bringmann K., Mahlburg K., Milas A., Quantum modular forms and plumbing graphs of 3-manifolds, J. Combin. Theory Ser. A 170 (2020), 105145, 32 pages, arXiv:1810.05612.
- Bringmann K., Mahlburg K., Milas A., Higher depth quantum modular forms and plumbed 3-manifolds, arXiv:1906.10722.
- Bringmann K., Milas A., $W$-algebras, higher rank false theta functions, and quantum dimensions, Selecta Math. (N.S.) 23 (2017), 1249-1278.
- Cheng M.C.N., Chun S., Ferrari F., Gukov S., Harrison S.M., 3d modularity, J. High Energy Phys. 2019 (2019), no. 10, 010, 95 pages, arXiv:1809.10148.
- Chun S., Gukov S., Park S., Sopenko N., 3d-3d correspondence for mapping tori, arXiv:1911.08456.
- Chung H.-J., BPS invariants for Seifert manifolds, arXiv:1811.08863.
- Deloup F., Turaev V., On reciprocity, J. Pure Appl. Algebra 208 (2007), 153-158, arXiv:math.AC/0512050.
- Dunfield N.M., Gukov S., Rasmussen J., The superpolynomial for knot homologies, Experiment. Math. 15 (2006), 129-159, arXiv:math.GT/0505662.
- Ekholm T., Gruen A., Gukov S., Kucharski P., Park S., Sułkowski P., $\widehat{Z}$ at large $N$: from curve counts to quantum modularity, in preparation.
- Fuji H., Gukov S., Sułkowski P., Super-$A$-polynomial for knots and BPS states, Nuclear Phys. B 867 (2013), 506-546, arXiv:1205.1515.
- Gukov S., Manolescu C., A two-variable series for knot complements, arXiv:1904.06057.
- Gukov S., Pei D., Putrov P., Vafa C., BPS spectra and 3-manifold invariants, arXiv:1701.06567.
- Gukov S., Putrov P., Vafa C., Fivebranes and 3-manifold homology, J. High Energy Phys. 2017 (2017), no. 7, 071, 81 pages, arXiv:1602.05302.
- Mariño M., Chern-Simons theory, matrix integrals, and perturbative three-manifold invariants, Comm. Math. Phys. 253 (2005), 25-49, arXiv:hep-th/0207096.
- Melvin P.M., Morton H.R., The coloured Jones function, Comm. Math. Phys. 169 (1995), 501-520.
- Park S., Large color $R$-matrix for knot complements and strange identities, arXiv:2004.02087.
- Rozansky L., The universal $R$-matrix, Burau representation, and the Melvin-Morton expansion of the colored Jones polynomial, Adv. Math. 134 (1998), 1-31, arXiv:q-alg/9604005.
- Zagier D., Quantum modular forms, in Quanta of Maths, Clay Math. Proc., Vol. 11, Amer. Math. Soc., Providence, RI, 2010, 659-675.
|
|