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Abstract. Following the approach of Ding and Frenkel [Comm. Math. Phys. 156 (1993),
277-300] for type A, we showed in our previous work [J. Math. Phys. 61 (2020), 031701,
41 pages| that the Gauss decomposition of the generator matrix in the R-matrix presentation
of the quantum affine algebra yields the Drinfeld generators in all classical types. Complete
details for type C' were given therein, while the present paper deals with types B and D.
The arguments for all classical types are quite similar so we mostly concentrate on necessary
additional details specific to the underlying orthogonal Lie algebras.
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1 Introduction

The quantum affine algebras U, (g) associated with simple Lie algebras g admit at least three
different presentations. The original definition of Drinfeld [9] and Jimbo [17] was followed by the
new realization of Drinfeld [10] which is also known as the Drinfeld presentation, while the R-
matriz presentation was introduced by Reshetikhin and Semenov-Tian-Shansky [23] and further
developed by Frenkel and Reshetikhin [12]. A detailed construction of an isomorphism between
the first two presentations was given by Beck [1].

An isomorphism between the Drinfeld and R-matrix presentations of the algebras U,(g) in
type A was constructed by Ding and Frenkel [8]. In our previous work [20] we were able to extend
this construction to the remaining classical types and gave detailed arguments in type C. The
present article is concerned with types B and D, where we use the same approach as in [20] and
mostly concentrate on necessary changes specific to the orthogonal Lie algebras oy and their
root systems. In particular, this applies to low rank relations with the underlying Lie algebras o3
and o4, and to formulas for the universal R-matrices.

As with the corresponding isomorphisms between the R-matrix and Drinfeld presentations of
the Yangians (see respective details in [4, 16] and [19]), their counterparts in the quantum affine
algebra case allow one to connect two sides of the representation theory in an explicit way: the
parameterization of finite-dimensional irreducible representations via their Drinfeld polynomials
can be translated from one presentation to another; see [5, Chapter 12|, [15] and [24]. As another
consequence of the isomorphism theorems, one can derive the Poincaré—Birkhoff-Witt theorem
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for the R-matrix presentation of the quantum affine algebra from the corresponding result of
Beck [2] for U,(g). We will give a more detailed account of these applications in our forthcoming
project.

To work with the quantum affine algebras in types B and D, we apply the Gauss decom-
position of the generator matrices in the R-matrix presentation in the same way as in types A
and C; see [8] and [20]. We show that the generators arising from the Gauss decomposition
satisfy the required relations of the Drinfeld presentation. To demonstrate that the resulting
homomorphism is injective we follow the argument of Frenkel and Mukhin [11] and rely on the
formula for the universal R-matrix due to Khoroshkin and Tolstoy [21] and Damiani [6].

Similar to the type C' case, we will introduce the extended quantum affine algebra in types B
and D defined by an R-matrix presentation. We prove an embedding theorem which will allow
us to regard the extended algebra of rank n — 1 as a subalgebra of the corresponding algebra of
rank n. We also produce a Drinfeld-type presentation for the extended quantum affine algebra
and give explicit formulas for generators of its center. It appears to be very likely that these
formulas can be included in a general scheme as developed by Wendlandt [25] in the Yangian
context.

To state our isomorphism theorem, let g = oy be the orthogonal Lie algebra, where odd
and even values N = 2n + 1 and N = 2n respectively correspond to the simple Lie algebras of
types By, and D,,. Choose their simple roots in the form

= € — €41 for i=1,...,n—1,
€n if g = 02p+1,

oy = )
€n—1+ €, if g=o02,,

where €1,. .., €, is an orthonormal basis of a Euclidian space with the inner product (-,-). The
Cartan matrix [A;;] is defined by

2 . .
Ay = M. (1.1)
(v, ;)
For a variable ¢ we set ¢; = ¢"* for i = 1,...,n, where r; = (ay, ;) /2. We will use the standard
notation
k_ . —k
q —q
K — 1.2
[K]q " (1.2)

for a nonnegative integer k, and

i k k]!
VG M e

s=1

We will take C (ql/ 2) as the base field to define most of our quantum algebras. In type B,
we will need its extension obtained by adjoining the square root of [2],, = ¢'/? + ¢~ /2.

The quantum affine algebra Uy(on) in its Drinfeld presentation is the associative algebra
with generators zt @, kz:t and ¢*/2 fori =1,...,n and m,l € Z with [ # 0, subject to the

im?
+c/2

following defining relations: the elements ¢ are central,

Rkt =k e = 1, qPq P =g P =1,
k?zkf] = k‘jkz, k; ajk = ajk ki, k; :L‘i k‘-ﬁl _ q?tAij +

J,m g J,m?
mA - ) qme — gme
[ai,maaj,l] = 5m,—l [ Zj]q —1

m a5 — 4,
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[mAijlg,

. 7 _ :FmCQ
[aim, ;)] = + e

+ + +Aij + + +Ai; + + + o+
im+1T50 — G T Tim1 = G Tim T i1 — T Timo

g2y — g M2

X

vy

+ + + + o ) )
Z Z [ ] Tissey " TiseyTimPisearny " Tisaiy T 0, i # J,
TeS, =0

where in the last relation we set r = 1 — A;;. The elements 1; ,, and ¢; —,, with m € Z are
defined by

%(U) = Z wi,mu_m = kjexp ( Zaz sU s) >
SOZ(U) = Z ¥4, —mu" = k exXp ( Zaz —sU ) )

m=0

whereas V; ;m = @i, —m = 0 for m < 0.
To introduce the R-matrix presentation of the quantum affine algebra we will use the endo-
morphism algebra End ((CN ®CN ) >~ End CY @ EndC". For g = 09,41 consider the following

elements of the endomorphism algebra (extended over C (ql/ 2)):

N
P = Zeij®eﬁ, Q= Zq 6’1]/®€U

3,j=1 1,7=1
and
N
R=gq Z €i; @ €5 + entintl @ Entintl + Z ey ® ejj + gt Z €i; & €y
i=1,i#i! i#j.5' i
+(q_q_1)zeij®€ji_ q9-q Zq Tewy @ eij,
1<j 1>7

where e;; € End CN are the matrix units, and we used the notation i/ = N +1 — i and
_ — 1 31 1 3 1
1,2,...,N) = — =y =, =, 0, =, —=, ... — —].
( ) ) ) ) (n 72727 ) 27 27 ) n+2)

In the case g = 09, we define the elements P, Q and R by the same formulas by taking N = 2n,
except that the second term €41 n41® €p41n+1 in the expression for R should be omitted, while
the barred symbols are now given by

(1,2,...,N)=(n—1,...,1,0,0,—1,...,—n + 1).

In both cases, following [12] consider the formal power series

o0
w) =1+ fru®,
k=1

whose coefficients fi are rational functions in ¢ uniquely determined by the relation
1
(1—ug?)(1—ug®)(l —uf)(l —u&t)’

fu) f(ug) = (1.3)
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where ¢ = ¢*>~V. Equivalently, f(u) is given by the infinite product formula

B o0 (1 o 'LL§2T) (1 o uq—2 £2r+1) (1 o uq2 527"—&—1) (1 _ u§2r+2) A
Fu) = THO (1 —ue ) (1 —ue ) (1—uge) (1 —ug2€x) (14)

In accordance with [18], the R-matriz R(u) given by
R(u) = f(u)(¢  (u=Du-OR~ (¢ = 1)(u— &P+ (¢7° = 1)(u—-1)€£Q) (1.5)
is a solution of the Yang—Baaxter equation

R12(’LL) ng(uv) Rgg(v) = Rgg(’u) ng(uv) R12(u).

The associative algebra UqR(EN) is generated by an invertible central element ¢%/2 and ele-
ments l?][- [Fm]| with 1 < 4,5 < N and m € Z subject to the following defining relations. We
have

+101 — 7-10] — L g +10 — 11017101 —
L50] =100 =0 for i>j and 170]1;;[0] = I;;[0] ;7 [0] = 1,

while the remaining relations will be written in terms of the formal power series

Z I [Fm]u (1.6)

which we combine into the respective matrices

Zl ®eU€U (o )Hu,u_l]]@)EndCN.
1,j=1

Consider the tensor product algebra End CY @ EndCV ® Uf(ﬁN) and introduce the series with
coefficients in this algebra by

Z I (u) ® ei; ®1 and Z Ew) ol €ij- (1.7)
,j=1 t,j=1

The defining relations then take the form
R(u/v)Lt (u)Ly (v) = Ly (0)L¥ (u)R(u/v), (1.8)
R(uq®/v)Ly (u)Ly (v) = Ly (v) Ly (u)R(ug™/v),

together with the relations
LE*(u)DLE(wé)' Dt =1, (1.10)

where t denotes the matrix transposition with egj = ey and D is the diagonal matrix

D = diag [qT,...,qﬁ]. (1.11)
Now apply the Gauss decomposition to the matrices Lt (u) and L™ (u). There exist unique

matrices of the form

1 0 ... 0 1 oefHu) ... eiy(u)

P = £ (w) 1 ... 0 FH ) — 0 1 ... efy(u)

fE ) feyw) .. 1 T
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and H* (u) = diag [hi( )y b (u )], such that

L*(u) = F(u )Hi( VE*(u). (1.12)
Set

X (u) = €;i+1 (”qcﬂ) - ei_,iJrl(uq_C/z)’ X (u) = fi—:l,i (“q_c/Q) fin, z(“qc/z)

fore=1,...,n—1, and

X ) = {ei’nﬂ (ua?) ~ € o (ug ) for type By,
en—l,n+1(uqc/2) —en 11 (ug ¢/2)  for type D,
X, (u) = {Jml’n (wg™?) 1 n_ﬂ" (uq’?) for type B,
fi+1,n_1 (Uqfc/Z) = fotin—1 (qu/Q) for type D,,.

Combine the generators ac - of the algebra U, (oy) into the series
o
meZ

Main Theorem. The maps q‘j/2 — qc/2’

v () = (6 — ") T XE (ug),

(ug
i) = by (ug') by (ug’) ™
pilu) h;il(uq ) i (ug’)
fori=1,. —1, and
o () s {(qn - qgl)j[ﬂqll/ZXf (ug™)  for type Bn,
(g0 —g") " Xi (ug™™?) for type D,

Ui (u) = {h;+1(uqn) e (ug")” for type By,

hyq (uq”‘l) h, 4 (uq”_l) -1 for type D,

on(u) o (ug™) f (ug™) ™ for type B,
" hzﬂ( n- 1) ht | (uq”_l)_l for type D,,,

define an isomorphism Uy(on) — UF(0n).

To prove the Main Theorem we embed U,(oy) into an extended quantum affine algebra
U;’Xt (o) which is defined by a Drinfeld-type presentation. The next step is to use the Gauss
decomposition to construct a homomorphism from the extended quantum affine algebra to the
algebra U(R) which is defined by the same presentation as the algebra Uf(ﬁN), except that the
relation (1.10) is omitted. The expressions on the left hand side of (1.10), considered in the
algebra U(R), turn out to be scalar matrices,

L*(u)DLE (ué)'D™ = 2% (u) 1,
for certain formal series z*(u). Moreover, all coefficients of these series are central in U(R).
We will give explicit formulas for z%(u), regarded as series with coefficients in the algebra
U (on), in terms of its Drinfeld generators. The quantum affine algebra U,(0x) can therefore
be considered as the quotient of U (o) by the relations z*(u) = 1.

As a final step, we construct the inverse map U(R) — Ug*(on) by using the universal R-
matrix for the quantum affine algebra and producing the associated L-operators corresponding
to the vector representation of the algebra U, (on).



6 N. Jing, M. Liu and A. Molev

2 Quantum affine algebras

Recall the original definition of the quantum affine algebra U,(g) as introduced by Drinfeld [9]
and Jimbo [17]. We suppose that g is a simple Lie algebra over C of rank n and g is the
corresponding (untwisted) affine Kac-Moody algebra with the affine Cartan matrix [A;]7;_,.
We let ag, a1, ..., a;, denote the simple roots and use the notation of [5, Sections 9.1 and 12.2]
so that ¢; = ¢" for r; = (v, ;) /2.

2.1 Drinfeld—Jimbo definition and new realization

The quantum affine algebra U,(g) is a unital associative algebra over (C(ql/ 2) with generators
E,,, F,, and k;ﬂ with ¢ = 0,1,...,n, subject to the defining relations:

kiky ' =k k=1, kikj = kiky,
_ A _ —Ajj
kiFo kit =q; "Eay,  kiFok; ' =q; " Fy,

71
ki — k!
[Eay, Fo,] = 0j—,
qi — g;
= 1-A
(—1)7[ . ”} (Ea,)"Eoy(Eo,) ™" =0, if i#}j,
r=0 qi
= 1-A
(—1)7"[ . ”} (Fo,) Fo,(Fo) ™" =0, if i#j.
r=0 qi

By using the braid group action, the set of generators of the algebra Uy(g) can be extended
to the set of affine root vectors of the form Euixs, Fatks, Ersq) and Fgs;), where o runs over
the positive roots of g, and ¢ is the basic imaginary root; see [1, 3] for details. Moreover, we

n n
can introduce ko = [] k" for every o = > m;cy, m; € Z. Especially, we denote ¢ = ks. The
i=0 i=0
root vectors are used in the explicit isomorphism between the Drinfeld—Jimbo presentation of
the algebra U,(g) and the “new realization” of Drinfeld which goes back to [10], while detailed
arguments were given by Beck [1]; see also [3, Lemma 1.5]. In particular, for the Drinfeld
presentation of the algebra U,(oy) given in the Introduction, we find that the isomorphism
between these presentations is given by

qc/2 — qC/z, x;; > o(z’)kEai+k5, T g o(i)kFaiJrk(;, k>0,
aclf’tk = —0(i)*F_, s k1™, Tip ~0(i)*q " ki B_q, 46 k>0,
aik — (i) g F P E s ), ai—k = ()" Fs,yd" ", k>0,

where 0: {1,2,...,n} — {£1} is a map such that o(i) = —o(j) whenever A;; < 0.

2.2 Extended quantum affine algebra

We will embed the algebra U, (on) into an extended quantum affine algebra which we denote by
U (on); cf. [8, 11] and [20]. Recalling the scalar function f(u) defined by (1.3) and (1.4) set

g(uw) = f(u)(u—q"%)(u—¢). (2.1)
To make formulas look simpler, for variables of type u, v, or similar, we will use the notation
ur = ugT/?, vy = vgFT?, ete.
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Definition 2.1. The extended quantum affine algebra U;Xt(EN) is an associative algebra over

(C(ql/ 2) with generators X Z.ik, hjm, h;_m and ¢%/2, where the subscripts take values i = 1,...,n
and k € Z, while j =1,...,n+ 1 and m € Z,. The defining relations are written with the use

of generating functions in a formal variable u:

Xf(u) = Zij,Ek uk, hli(u) = Z hi}m utm,

keZ m=0

they take the following form. The element ¢%/2 is central and invertible,

hiohio = highio = 1.

Type B: For the relations involving h;t (u) we have
hi(u)hy (v) = by (v)h; (u), hii1o=1,
c +1 —c +1 .
9((ug/v)™) b (WA (v) = g((ug™/v) ™) b (V)b (u),  i=1,...,n,
Ut

)
o((ug”/0)™) L S R @) = g(ug/0) ™) SR b (),

for ¢ < 7, while

-1, 12, _ —1/2
¢/ Nt @ UL — QU @ TUL — ( Vg , 4 T
h h
9((ug®/v)™") qui — ¢ lvs ¢ Pug — g 2u; na (Whi 1 (v)
-1, _ 1/2,  _ ,—1/2
- +1\ 4§ Ux —qU+ ¢ Uz — (g U+ ¢ +
=g((ug~/v At (v)hE, | (u).
(( / ) )qu¥ _qflvi q*1/2u¢ _ql/Q,Ui n+1( ) n+1( )

The relations involving hi (u) and ij»[ (v) are

U — V4
WEW)X (1) = e X (u)hE ()
gl — gy
—(€i,05)q, . — ol€ir05)
— q Ut — (g U _
h;t(u)Xj (v) = ur — Xj (U)hzi(“)

for i # n 4+ 1, together with

hi1 (W) X (v) = (uiqﬁt[v_) Z};fZJF__qE)lv) X, ()i (w),
_ (ux—qv)(que — g7 My

) = (o
(quz —v)(uz —v) ~n W),

n

and
(WX () = X (i (w), hg (X7 (0) = X7 (0)hiy (w),
for 1 <i < n — 1. For the relations involving X" (u) we have

(1 = " 0) X (ug') X5 (vg”) = (4717 u = 0) X (vg”) X (ug')
for 1 <1i,5 <n,and

X (), X5 ()] = 0 (a — a7 ) (5 (g™ /v)hi (v1) " g ()
= 0(ug®/v)h (ug) T i (uy))
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together with the Serre relations

! T
50 S| X)X ) X5 0 X )+ X ) = 0,
TeS, =0 qi

which hold for all ¢ # j and we set r = 1 — A;;. Here we used the notation
d(u) = Z u”
reZ

for the formal §-function.
Type D: For the relations involving hii (u) we have

h;t(u)hji(v) = h]j.:(v)h;t(u), hr:lz:,Oh7:|l:+1,0 =1,

c —c + .
g((uq /v)il) h;t(u)hf(v) :g((uq /U) 1) hf(v)hfc(u), i=1,...,n+1,

and
-1
o) EL @ Uy —que up —vg oy
h ht

g((uq /U) ) qui — q_lv¥ Uy — q_lv$ n(u) n+1(v)

-1
_ 41, ¢ U —qur Uz —ve o
= g((ug=¢/v h
( /v)7) qus —q lvg up — g log "

()i (u)

together with

o((ua"/0)™) P A @I @) = g(ug™/0)™) S SR Wk ()

for i < j and (4,§) # (n,n + 1). The relations involving hi (u) and in(v) are

+ + () — u— v+ +(\pE
hz’ (U)X] (U) - q(€i70‘j)u _ q_(ei’aj)Uin (U)hz (u)v

_ g uy — gy

hi (W)X (v)

; ppra— Y O L0)

for i # n + 1, together with

+ ur — v +
PEA X (0) = e X )b (),
-1
+ — q U+ —qu , _ 4
hn—i—l(u)Xn (U) - Uy — v Xn (U)hn—l—l(u)a
and
hE (WX (0) = —F "% X+ (0)hE (u)
n+1 n—1 qu= —q_lv n—1 n+1 ’
1
— quy —q U, _
hiﬂ(U)anl( ) = Ut — v Xnﬂ(”)hfﬂ(u)v
while
hrjzc+1(u)X;r(U) = X;r(v)hfﬂ(u), hrjf+1(“)Xz’_ (v) = Xz‘_(v)hfﬂ(u),

for 1 < i < n — 2. For the relations involving X" (u) we have

(u— ¢ 0) X (ug') X (vg?) = (¢ u — 0) X (vg?) X;F (ug’)
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fori,j=1,...,n—1,
(u— g™ ) X (ug') X7 (vg" ") = (¢ u —0) X (vg" 1) X5 (ud’)
fori=1,...,n—1,
(u — gm0 o) X (u) X (v) = (¢F@ ) u — 0) XE (0) X (u)
and
(X7 (), X; (v)] = di(¢ —a™")
X (0(ug¢/v)h; (v3) by (03) = 6 (wg/v) byt (uy) " R (us)

together with the Serre relations

DI H XE(tn1y) -+ XE () XE W) XE (i) -+ XE(tnry) = 0

€S, [=0
which hold for all ¢ # j and we set r =1 — A;;.

Introduce two formal power series 2+ (u) and 2~ (u) in u and u~!, respectively, with coefficients
in the algebra Us*'(oy) by

TT b (ueq®) ™ hif (ugq®2) - hE, (u) i,y (ug) for type B,
2 (u) = {0y N N i N (2.2)
‘H1 h; (ufq ’) h; (u&q = ) -h (u )hn+1( w) for type D,

where we keep using the notation ¢ = ¢>~. Note that by the defining relations of Definition 2.1,
the ordering of the factors in the products is irrelevant.
The following claim is verified in the same way as for type C; see [20, Section 2.2].

Proposition 2.2. The coefficients of z*(u) are central elements of U™ (o).

Proposition 2.3. The maps ¢“/% — ¢/2,

() = (6 — a7 ") X (ug),
Vi(u) = hi (uql) h; (uqi)_l,
)= by (ug') i (ug)
fori=1,...,n—1 in both types,

w) e (g — gy ) T XGE (ug™),

(
VYn(u) = by (uq”) h,, (uq”)fl,
(

pi(u

+

Tn,

n(u) > b (ug™) bt (ug™) ™

for type B, and

) = (o — ) X (ug™ ),
¢n(u)Hh;+1(uQ _1) o, I(an 1) 1
() > iy (ug™ ™) By (ug™ )

S

Xz

for type D, define an embedding <: Ug(on) — U (o).
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Proof. As with type C [20, Section 2.2], it is straightforward to check that the maps define
a homomorphism. To show that its kernel is zero, we extend the algebra U,(oy) in type D
by adjoining the square roots (kn_lkn)il/ 2 and keep using the same notation for the extended
algebra. In both types we will construct a homomorphism p: U;Xt (on) — Uy(on) such that the
composition g o is the identity homomorphism on Uy(oy).

There exist power series (¥ (u) with coefficients in the center of U (o) such that

(Fu) (F(ué) = 2% (u).

Explicitly,
_ H zi(u£—2m—1)zi(u§—2m—2)—1'

Note that although the formula involves an infinite product, the coefficients of powers of u
turn out to be well-defined elements of Us*(oy); cf. the proof of Proposition 5.5 in [20]. The
mappings X (u) — X (u) fori =1,...,n and h]i(u) — hf(u) ¢F(u) for j =1,...,n+1 define
a homomorphism from the algebra Us* (o) to itself. The definition of the series ¢ *(u) implies
that for the images of h(u) we have the relation

hit (u) ¢ () b (u€) ¢ (u) = by (u) b (u€) 2% (u).
Hence the property p o ¢ = id will be satisfied if we define the map p: U;Xt (on) — Uy(on) by
Xii(u)»—> (qi—qi_l) x;-t(uq_i) for i=1,...,n—1,
and
Xo(u) = (g0 — g5 ") i (g™ "),
while
h;t(u)Ha;t(u) for i=1,...,n+1,

where the series ozft(u) are defined in different ways for types B and D and so we consider these
cases separately.
For type B we have

n i—1 n
of (u)oif (u€) = [ en(ued®) ™ ] on(uea™) [ en(ua™)™
k=1 k=1 k=i
fori=1,...,n, and
_1 n
ap g (u)ant (ug) = H@k uéq®) " [ en(uga™).
k=1
Explicitly, by setting @;(u) = kjp;j(u), we get

=TT TI & (ue2a?) 7 Gy (ue > 2q7) 5 (ue 2 q7) ™' 3 (g2 ~2q )

m=0j=1

i—1 n
X H@j(uq_j) X Hk‘l
j=1 Jj=t
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fori=1,...,n, and
n+1 H H‘P] u€—2m '(uf_Qm_lqj) (u§ 2m— lq—]) -1 (u€—2m 2q—])
m=0j=1

n
X H @j(ug™)
j=1

In type D we have

1—1 n—1
a; (u) of (ug) = BN Hsok ued) ™ T en(uea™) T or(ua™)™
k=1 k=1
fori=1,...,n—1,
n—1
a (u) g (u€) = ) Hsok ued") 7 T en(ugq™)
k=1

and
n—1
i (u) gy (u€) = pp (uég ™ Hwk ugd®) " [ er(uga™).
k=1

Explicitly, by setting @;(u) = kjp;j(u), we get

n—2

= 11 11 i (uc™¢) '35 (ug ™27 (w21 7) ™ gy (ug =22 7)
m=0 j=1

00 n n—2
« HO 'H1¢j(u£2mqn1) (u§ 2m—1 ¢ 1 H% W ij(kn—lkn)1/2
m=0j)j=n— =1

j=1
fori=1,...,n—1,
oo n—2 L ' )
af(w) =[] [T & u ") & (ug>"¢?) @5 (ug > 1q77) " @, (ug > 2q77)
m=0 j=1
o] n n—1
< [I TI @i(ue 2 a™ ") " (e 1) [T @5 (ua ) (ki ka) 2,
m=0j=n—1 7j=1
and
co n—2 L )
1 (W) = H ®j (uf‘quﬂ) ~J'(u —am lqj)‘ﬁj (“5_2m_1q_j) p (“5_2m_2q_])
m=0 j=1
% H H @j(u£—2mqn—1) 1~](u€—2m—1qn—1)
m=0j=n—1
n—1
x [T @5 (ua ™)@ (wg™ 1) (K k) ™2
j=1

In both types the relations defining «; (u) are obtained from those above by the respective
replacements o (u) — «; (u), ki — k' and ¢p(u) — p(u). Although the above explicit
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formulas of a"(u) involve infinite products, their coefficients actually belong to U (o). For
instance,

n
of (u) = hfoexp Z Z (qj — qj_l)Blj (qk)aj,,kuk ;
k>0 j=1

see the proof of Proposition 5.5 in [20] for more details.
As with type C, one can verify directly that the map ¢ defines a homomorphism or apply
the calculations with Gaussian generators performed below; cf. [20, Remark 5.6]. |

By Proposition 2.3 we may regard U,(oy) as a subalgebra of Ug*(oy). In the following
corollary we will keep the same notation for the algebra U,(oy) in type D extended by adjoining
the square roots (k,_1kn)*"/? (no extension is needed in type B). Let C be the subalgebra
of U (o) generated by the coefficients of the series 2= (u).

Corollary 2.4. We have the tensor product decomposition
U;Xt(/O\N) = Uq(/U\N> ®(C(q1/2) C.

Proof. The argument is the same as for type C' [20, Section 2.2]. [

3 R-matrix presentations

3.1 The algebras U(R) and U (R)

As defined in the introduction, the algebra U(R) is generated by an invertible central element q“/?

and elements l;; [Fm] with 1 < 4,7 < N and m € Z4 such that

0] =150 =0 for i>j and  15[0]1;[0] = I;;[0]15[0] =1,
and the remaining relations (1.8) and (1.9) (omitting (1.10)) written in terms of the formal
power series (1.6). We will need another algebra U (ELwhich is defined in a very similar way,
except that it is associated with a different R-matrix R(u) instead of (1.5). Namely, the two

R-matrices are related by R(u) = g(u)R(u) with g(u) defined in (2.1), so that

Ru)= 1 ¢—q' , (e-q)u-1)¢
R( )*uq_q_1R+uq_q_1P (uq—qil)(u—ﬁ) Q. (3.1)

Note the unitarity property
Elg(u) Egl (’u,fl) =1, (32)

satisfied by this R-matrix, where Ri2(u) = R(u) and Ro1(u) = PR(u)P. More explicitly the
R-matrix R(u) can be written in the form

N

= u—1 q—q!
Ru)= > ea®ecit+_—— > ea®e+_— 5 >, ej®c
i=1, i W=a " gy W=y
+(q_q71)u Y e ®eji+ ! g: (u) e ® (3.3)
1 €ij €ji o — ai;(uw 67;/]‘/ €ij, .
=y (u=a7?)(u=8) S5
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g 2u—&)(u—1) for i=y75, 1#7,
Tu-Hu-)+E-D(¢?=u for i=j i=7,
g2 =1)(¢(u—-1)=d;r(u—¢)) for i<j,
g2 =Du(¢I(u—1)=j(u—¢)) for i>j.

The algebra U (E) is generated by an invertible central element ¢%? and elements gi:]% [Fm]
with 1 <¢,7 < N and m € Z such that

0] = ¢2[0] = ] +101 /=101 = /=101 /101 =
0] =0,[0]=0 for i>j and  £7[0]£;[0] = £;[0]£;[0] =1

Introduce the formal power series

Z KU Fm]u

which we combine into the respective matrices
Z tE(u) @ ei; € U(R)[[u,u']] ® EndC",
i,j=1

The remaining defining relations of the algebra U (E) take the form
R(u/v) L5 (u) L3 (v) = £5(v) Ei( ) R(u/v), (3.4)
R(ug®/v) L (u) L3 (v) = L3 (v) L1 (u) R(ug™*/v),

where the subscripts have the same meaning as in (1.7). The unitarity property (3.2) implies
that relation (3.5) can be written in the equivalent form

R(ugq™¢/v) Ly (u) L3 (v) = L3 (v) L1 (u) R(ug®/v).

Remark 3.1. The defining relations satisfied by the series @E(u) with 1 < 4,5 < n coincide
with those for the quantum affine algebra U, (gA[n) in [8].

Following [8] and [20] we will relate the algebras U(R) and U(R) by using the Heisenberg
algebra H,(n) with generators ¢¢ and /3, with r € Z \ {0}. The defining relations of H,(n) have
the form

[67‘755] = 57‘,—5 A, r=1,

and ¢¢ is central and invertible. The elements «, are defined by the expansion

- glug™)
exp Zaﬂf = (g
r=1 g

uq©)

So we have the identity

o0 oo
g(ug®/v) exp ZBTUT- exp ZB v =g(ug /v)exp Zﬁ s % - exp Zﬁru'f
r=1 r=1

s=1
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Proposition 3.2. The mappings

o0

LM (u)rrexp Y Bopu" LT(u), L7 (u)—expy B’ - L (u),
r=1

r=1
define a homomorphism U (R) — H(n) ®c iqe, g U(R).

We will use the notation t, for the matrix transposition defined in (1.10) applied to the a-th
copy of the endomorphism algebra End C¥ in a multiple tensor product. Note the following
crossing symmetry relations satisfied by the R-matrices:

(u—¢°)(ug—1)

(1-— u)(l — u§q2) ’
R(u)D1R(ug)" D' = &2q72,

R(u)D1R(ué)" Dyt =

where the diagonal matrix D is defined in (1.11) and the meaning of the subscripts is the same
as in (1.7). The next two propositions are verified in the same way as for type C; see [20,
Section 3.1].

Proposition 3.3. In the algebras U(R) and U(R) we have the relations

DL*(u&)'D7 YL  (u) = L* (w)DL* (ué)' D71 = 2% (u) 1,
and

DLEuE)'D7 LY (u) = LE(w)DLE (ué)'DY = 55 (u) 1, (3.6)
for certain series z*(u) and 3% (u) with coefficients in the respective algebra.

Proposition 3.4. All coefficients of the series zt(u) and z~(u) belong to the center of the
algebra U(R).

Remark 3.5. Although the coefficients of the series 5+ (u) and 37 (u) are central in the respective
subalgebras of U (R) generated by the coefficients of the series E;; (u) and i (u), they are not
central in the entire algebra U (E)

3.2 Homomorphism theorems

Now we aim to make a connection between the algebras U (E) associated with the Lie alge-
bras on_2 and on. We will use quasideterminants as defined in [13] and [14]. Let A = [a;;] be
a square matrix over a ring with 1. Denote by A% the matrix obtained from A by deleting the
i-th row and j-th column. Suppose that the matrix A% is invertible. The ij-th quasideterminant
of A is defined by the formula
|Aliy = ai; — 7 (A7) '],

where rij is the row matrix obtained from the i-th row of A by deleting the element a;;, and c;
is the column matrix obtained from the j-th column of A by deleting the element a;;. The
quasideterminant |Al;; is also denoted by boxing the entry a;; in the matrix A.

The rank n of the Lie algebra oy with N = 2n+41 or N = 2n will vary so we will indicate the
dependence on n by adding a subscript [n] to the R-matrices. Consider the algebra U (E [n_l])
and let the indices of the generators Eij;[:Fm] range over the sets 2 < 4,7 <2’ and m=0,1,...,
where i’ = N — i + 1, as before.

Proofs of the following theorems are not different from those in type C'; see [20, Section 3.3].



Isomorphism between the R-Matrix and Drinfeld Presentations 15

Theorem 3.6. The mappings ¢=/? — ¢=°/2 and

2<i,j <2
+ + ) N J R ]
Ciy(u) gij ()

define a homomorphism U(E[n_l]) — U(R[n]).
Fix a positive integer m such that m < n. Suppose that the generators ﬁl-j; (u) of the algebra
U(E[n_m]) are labelled by the indices m +1 < 4,5 < (m+1)".

Theorem 3.7. For m <n — 1, the mapping

Gi) o 65 ) . ) 5| mA1<ii<(m+1), (3.7)

defines a homomorphism 1, : U(R[n_m]) — U(E[n]).

We also point out a consistence property of the homomorphisms (3.7). Write ¢, = wﬁ ) to
indicate the dependence of n. For a parameter | we have the corresponding homomorphism

o0 @RS s u@Y

provided by (3.7). Then we have the equality of maps z/)l(n) o 1/)5,? -0 = 1/11(1371

Corollary 3.8. Under the assumptions of Theorem 3.7 we have
[£35(w) i (€55 (0))] = 0,

U+ — Vg + Uy — V4 +
qus — g tog ab(t)¥m( ”(v)) quF — qflviw ( ”(v)) ()

foralll<a,b<mand m+1<i,57<(m+1)".

4 Gauss decomposition

Apply the Gauss decompositions (1.12) to the matrices L*(u) and £¥(u) associated with the

respective algebras U (RM) and U (E [n]). These algebras are generated by the coefficients of the
matrix elements of the triangular and diagonal matrices which we will refer to as the Gaussian
generators. Here we produce necessary relations satisfied by these generators to be able to get

presentations of the R-matrix algebras U (R[”]) and U (E[n}).

4.1 Gaussian generators

The entries of the matrices F*(u), H*(u) and E*(u) occurring in the decompositions (1.12)
can be described by the universal quasideterminant formulas [13, 14]:

litl () ... li‘ﬂ(u) li(U)
A D : .
Sl @) L @) e “y)

Gilw) o ) |
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whereas
lﬁ(“) li 1(w) litj(u)
= i W)L (+2)
i) o ) [E()
and
lﬁ(“) litz 1( u) li(u)
fﬁ(u) l;tl'l( ) Z{JEU'1(U) liu(u) hii(u)il (4.3)
Ghw) o i) |G

for 1 <i < j < N. The same formulas hold for the expressions of the entries of the respective
triangular matrices F*(u) and £*(u) and the diagonal matrices H*(u) = diag [hi"(u)] in terms
of the formal series Eij;(u), which arise from the Gauss decomposition

LE(u) = FF(u) HE (u) EF (u)

for the algebra U(R M). We will denote by e;;(u) and §;;(u) the entries of the respective matri-
ces EF(u) and F*(u) for i < j.

The following Laurent series with coefficients in the respective algebras U (R[”]) and U (E [n])
will be used frequently:

X;“(u) = eZi+1(“+) - ei_,iJrl(u—)? X (u) = f7,+1 (u—) — fz‘jrl,i(UJr)a (4.4)
X7;+(U) = eZi+1(U+) - ei_,i+1(u—)7 X (u) = fz+1 J(u—) — fi_+1,i(u+)
fori=1,...,n—1, and
nn+1 U+ nn—i-l( ) for type B’ (4 6)
n 1,n+1 U+ nfl n+1(u*) for type D,
n+1 n +1 n(UJr) for type B, (4.7)
n+1 n— 1 - fn+1,n71(u+) for type D,
while
n n+1 U+ ¢y n+1( ) for type B’
n 1,n+1 'LL+ €1 n+1 (U_) for type D7
Xn (U) — :L_Jrl n( ) - fnJrl n(u-i-) for type B7
fn-i—l,n—l( —) - fn—i—l,n—l(u"r) for type D.

Proposition 4.1. Under the homomorphism U (R) — Hq(n)®¢ ¢¢,q—<| U (R) provided by Propo-
sition 3.2 we have

+ +
eij (U) — 6ij (U),

Fij () = £5 (w),
bt (u) — expz BeruTF - hE (u).

k=1
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Proof. This is immediate from the formulas for the Gaussian generators. |

Suppose that 0 < m < n. We will use the superscript [n —m] to indicate square submatrices

corresponding to rows and columns labelled by m+1,m+2,...,(m+1)". In particular, we set
1 0 e 0
+
J—_':I:[n—m] (u) _ fm+2 77.z+1<u) 1 . 0 :
. : L . :
Fomnymir (W) Ty gy (@) 1
+
Loeimea(w) - e;tn+1(m+1)’(u)
gty = | ;
: : e(m+2)’ (m~+1) (’LL)
0 0 . 1

and Hi[nfm]( ) = diag [hm—i-l( ) B b(imﬂ)/(u)]. Furthermore, introduce the products of these
matrices by

Ei[nfm] (u) _ fi[nfm} (u) Hi[nfm] (U) gi[nfm] (u)

The entries of ££1"~l(u) will be denoted by £ " (w).
The next series of relations are B and D type counterparts of the corresponding relations in
type C and verified by the same calculations; see [20, Section 4.2].

Proposition 4.2. The series Kij;[n_m}(u) coincides with the image of the generator series Elj;(u)

of the extended quantum affine algebra U(E[n_m}) under the homomorphism (3.7),

G ) = Y (5 (), mA 1<y < (m 1)),

(]
Corollary 4.3. The following relations hold in U(R[n]):
By " (/o) L5 ) £ ) = 25 ) 25 ) Rl (u /v)
By "y foo) £ ) £ w) = 25 ) £ ) By e o).

Proposition 4.4. Suppose that m + 1 < j,k,0l < (m+1) and j # U'. Then the following
relations hold in U( ) if j =1 then

-1 -1
L Feml o QUF — 0 ) (e ux gpemy, 5
em‘](u)gkl ('U) - u:F — vy e ] (U)eml(u) u:F —vg g J ( )emj ('U),
—1 —1
+[n—m qu —q "V  +[n—m q—dq U +in—m
o (0" () = T T w)er (0) lag ) u_v) by MW 0) (48)
if 5 <l then

ek (), (0] = U)o ey e ) (8= )0 )

mj Uz — v kj Cmi Uz — Vi kj
+ +[n—m)| (q - q_l)v +[n—m)] + ((] - q_l)u +[n—m)] +
[y () b " ()] = S T ) () — S T () (v); - (49)
if § > 1 then

—_ o Du
(e, (u), 65" ™ ()] = w@"‘m} (0) (e, (1) — e, (v),

m,

— 1 u _
(e (u), 6" " ()] = w&;‘;{" ") (e, (u) — e, (v)).
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Proposition 4.5. Suppose that m +1 < j,k,l < (m+ 1) and j # k'. Then the following
relations hold in U( ): if j =k then

—1
n—m U % n—m q—dq v n—m
(WG @) = ST O + q(u - q)lj; @G ),
-1
Lo pEeml oy U ] (@—a v tpeml
fjm(u)ejl (v) = qu — q_lvgﬂ (uv) fjm(u) + qu —q-lv fjm(v)gjl (v);
if 7 < k then

— oo — s
(), )] = Ty prlomml Mffmwﬁ"‘w (v),

Jjm Ut — U J U4+ — Vx

—q Yo _ —q Yu —
7,0, 65 0)] = U0 oyt - ) ety
if j > k then
—q Yo —
[Fon ), 6" )] = M(fmw L OF
—q v _
[ (0, 6" (0)] = M(ffmw) — Fn ()G ().

4.2 Type A relations

Due to the observation made in Remark 3.1 and the quasideterminant formulas (4.1), (4.2)
and (4.3), some of the relations between the Gaussian generators will follow from those for the
quantum affine algebra U, (g[n); see [8]. To reproduce them, set

[:Ai Z ﬁ ® €ij

1,j=1

and consider the R-matrix used in [8] which is given by

Zem®ezz vl Zezz®€]]

i#]

-1 1
q9—4q qa—q ")u
qu qu—q 1 E €ij ® ej; + 7( P q)l E €ij & €ji.
>7 1<J

By comparing it with the R-matrix (3.1), we come to the relations in the algebra U (R [n]):
Ra(u/w) L% (u) £57% (v) = L£3F(0) L1 (u) Ra(u/v),
Ra(ug®/v) L1 (w) L5~ (v) = L5~ (0) L1 (u) Ra(ug=/v).

Hence we get the following relations for the Gaussian generators which were verified in [8], where
we use notation (4.5).

Proposition 4.6. In the algebra U(EM) we have

b (w)h (v) = by (0)b (u), b (wbhF(v) =bF (V)b (u)  for 1<i,j<n,

e e N ) = SO for 1<
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Moreover,
Ug — U
hit(u)‘)(;r(v) = lenoy) - —(es,05) Xf(v)bzi(u)a
q 1,5 u:F —_ q »&5 )y
(€i,05) gy, — g—(€0,05)
hi(u)X-_(v) I A Sl ’ UXA_(U)f)i(u) for 1<i<n, 1<j<n,
! J Ut — v J !
while

(u— qi(o""o‘j)v) x* (uqi)é\,’jlL (vg!) = (qi(ai’o‘j)u —v) in (vg?) X E (ug"),

and
[ (u), X (0)] = 6i5(a— g7 ")
(6(ugc/v) by (v4) "0 (vg) — 6(ug®/v) b (ug) " hiE (ug)
for 1 <i,j < n, together with the Serre relations for the series X (u), ..., X | (u).
Remark 4.7. Consider the inverse matrices £ (u)™! = [Ejj[(u)’]fvjzl By the defining rela-

tions (3.4) and (3.5), we have

LE ) L5 (o) R (ufo) = B (/o)L (0) 7 L5 (),
L5 () Lf () B (ug?fv) = B (ug=e/v) Ly () LF (),

So we can get another family of generators of the algebra U (E[n]) which satisfy the defining

relations of Uy (Q{n) Namely, these relations are satisfied by the coefficients of the series Kij; (u)
with 4,7 = n/,...,1’. In particular, by taking the inverse matrices, we get a Gauss decomposition

for the matrix [Eg(u)’]i,j:n/,__’l/ from the Gauss decomposition of the matrix £*(u).

4.3 Relations for low rank algebras: type B

In view of Theorem 3.7, a significant part of relations between the Gaussian generators is implied

by those in low rank algebras. In this section we describe them for the algebra U (R[l]) in type B
associated with the Lie algebra o3.

Lemma 4.8. The following relations hold in the algebra U(Em). For the diagonal generators
we have

hi (Wi (v) = by ()b (w), b (Wb (v) = b (V)bi (w),
bF ()b (v) = b ()b (u), (4.10)
Uy — 'U:F + _ U:F — U+ +
P (w)b3 (v) = P b3 (v)by (w). (4.11)
Moreover,
—_ _ 1
0 () fa0) = S a0 () + q(; O eyt
_ _ 1
e = Y et + ) et 0,
. _ 1
AT () = b ) + q(ji_“’q)“i 1 (Wb (w), (4.12)
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) = — b () + )Y ), (413)

qu —q v ; qu —q v

and

—au — oy
[e5(u), §F, (v)] = (0207 )1 - (‘-’q)i b2 (u)hi (u) Y,

quy — ¢ tvx qui —q !
et ] = LT ) — ) (411

Proof. All relations in the lemma are consequences of those between the series €§? (u) and Elfl (v)

with ¢ # &’ and j # I’ in the algebra U (E[l]). Therefore, they are essentially relations occurring
in type A and verified in the same way; cf. Proposition 4.6. |

Now we turn to the B-type-specific relations.

Lemma 4.9. In the algebra U(Em) we have

-1 —1

ooy ug—q oy ooy (a—g Dus o
i (u)e ) (v) = 4‘1_115? o 3172(1))31,2(71) ¢ Tur — qus e1,2(”)
_ (u¥ - q_lvi) (1 — q_Q)U:t ei ( )2

(¢ ug = vx) (ug — g720s)
(g —va)g (a7 = Dvs o (u)
(¢ ug = vx) (ug — g720) 7
S L U eF. (v

3

(¢ tug —vi) (¢ ug — quy) “

and
+ + u—q vy + (g Du oo
91,2(U)31,2(U) = mem(v)em( u) — m%,z(”)
_ (u_q_lv)(l_q 2),0 i ( )2
(¢Tu—0)(u—q20) 2
(u—v)g (g2 = 1)v (u—0)g (g —q)u
+ (¢ 'u—v)(u—q20) 173(u) (¢ 'u—v) (¢ u — qv) 13(0)-
Moreover,
1 1
a0 () = 5 T 0 ) - q(quf_)qu 510)?
(e lor) (AP us
(¢ lus —vg) (“i - q””?) faal)
(ux —ve)g (g2 = Nug
"o Tus = o) fas = g 2g) 1
n (ux —vg)g ? (¢ — q)uz F (1)
(¢ 'us —ve) (¢ tus — qug) >
and
1, P A
()5 (0) = S U () (0) - o= g )op 2

¢ lu ’ g lu—qu



Isomorphism between the R-Matrix and Drinfeld Presentations 21

u—q o —qg u
S e
uUu—"v —1/2(g=2 _ U

((qlu)(i S (SJ_ q;v)) () +

Proof. By using the expression (3.3) for the R-matrix, we obtain from (3.5) that

(u—v)g (g7 = q)v
(¢ 'u—v) (¢ u — qu)

f;(”)-

) ) = q?)l(y ey () ()
+ aga(y) (5 (0) 0y (w) + aza(y) 013 (0)0F (u)), (4.15)

where we set y = u_ /u. Similarly, we also have

y—1 (a—q Yy

0 (u) by (v) = ﬂfn( )1y (u >+W€1_2(U>EE<U)7
o -1
W) = L0060 ) + L= 0w, (4.16)

In terms of Gaussian generators the left hand side of (4.15) can now be written as

1
Il et @ + Y e wnt ),
which equals
(a—q 1)

qyy‘qm( V)b (w)efy(u)ery(v) + It (u)by (v)er(v)2

Y-
Now use another consequence of (3.5),

) R() = 1 q_Q;(y ey (s 0

+ ag3(y) 15 (0) 05 (u) + ass(y) 5 (v)E]; (u)),

which together with (4.16) brings (4.15) to the form

qyy o7 (0] (e (u >e;2<v>+(q;ql)h1< )by (v)ens (v
- on et
! (gfy 1)12q(q1 ))fh( )b (v)erz(v)ef ()
e I b et
+ Uz(qu__f)hnu)m(v)elg(u).

Since the series by (u) and by (u) are invertible and their coefficients pairwise commute, we
arrive at one case of the first relation of the lemma. The remaining relations are verified by
quite a similar calculation. |
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Now we will be concerned with relations in the algebra U (Rm) involving the diagonal gen-
erators b3 (u).

Lemma 4.10. We have the relations

(a—a "o
(I _'U:F

b3 (v)F1 (u) + f31(v)b3 (v)
1

(0~ us — qug) (us — g 'os)

-2 1/2
= g o)+ T ey

32(”)55(0) (4.17)

(us —vg) (¢ Tus — vg) ¢ lug —vg
and
4 \et (@—a v, o
by (v)f2; (w) + ﬂle(”)fb (v)

(q_lu — Q’U) (U — q_l'l))

= ] i ()b (v) + (== Y)a

P32 (0)b3 (v).

(U*U)(qflu g lu—wv
Moreover,
T C ok B L PR
e12(u)b3 (v) + T — o b3 (v)ef,(v)
F +

_ (g7 g — qua) (us — g7 Mox) b3 (v)erz(u) +

(ug —vs) (g ug —vs) Tuy oz 2 0)R()
and
e u0E0) + Lz et o)
- (q;“__jfg(?u__q;; Vs et + T sy,

Proof. All eight relations are verified in the same way so we only give full details to check one
case of (4.17), where the top signs are chosen. The defining relations (3.5) imply

== OB + @ R0) + @ (i)
— _ 1
— qyy_ql_l«%g(v)@l (u) + ﬁ%(v)%(u% (4.18)

where z = uy /v_ and y = u_/vy. In terms of the Gaussian generators the right hand side can
be written as

-1

= A )G )

-1
hfgl (0)61_2 (U)f;_l (u) +

—1
hh;(v)@(m +

Applying (3.5) again we get the relations

z—1 _ q—qt _
05 (u)l - (u)
g —q o1 (w)lip(v) + p—— 11 (W)l (v)
y—-1 a—q'
= Vvl (u) + ————L4(v)l5,(u
P 12(0)431 (u) P 11(0)35(u)
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and

-1 - a—q" ¢ +
Wgzl(u)gn(”)“‘ﬁgn( )51 (v) = £17 (v) 651 (w).

They allow us to bring the right hand side of (4.18) to the form

r—1 —1

2 q—l b3 (v)05; (u) + WE ()63 (u) 3 (v) + %fﬂ( v)f; (u)l(v)
T — _ -1
= L 00+ 1) (St 060 + I w6 0)) ()
_ 4,1
e QLI OLAC)

which is equal to
y— qg—q"
o (0)€31 (w) + Ly (V)43 (e (v) + me( V)b (w)hy (v).
Due to (3.5) the expression
1

(z—a72)(z—q"

0 (@21 ()5 ()b (v) + ana ()03, (w)lyy (v) + azs () (u) s (v))

coincides with £5; (v)f4; (u) so that the right hand side of (4.18) equals
1
(w—qﬂﬂw—Q*

05 (u) + 14
qy_q_le( )5y (u) p—

) (a21(2)0; (u)lyy (v) + ana ()3, (u)lgy (v) + azs ()L (u) g (v) ey (v)

-1

— a1 (V)7 (w)by (v).

Hence we can write (4.18) in the form

- = (222651 ()b (0) + a2s(2) 5, (0) ()0 ()

_ 1
qyy ﬁ fo1 (0)bT (w)b3 (v).

Together with (4.12) this leads to the relation

a22(x —q! 21‘
as3(r)

(x — q—2) (a: _ q_l) hf(u)f:&(“)h;(”)

(¢—q¢ ') (=z—1)
T = q—l by (v)63 (u) + (g — q_1)2

—1 by ()43 (u) +

_|_

b ()21 ()b (v)-

By the following consequence of (4.13),
03, (w) = 3, ()b (u) = ab (w)i3; (ug®),

the relation takes the form

a2(x —q! 21’
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az3(r)

+’(x-q—2)($__q_l)hi<uJﬁ§(v)h;(v)

—¢H-1
o _th<v>urunf;<uq2)+-(q(qj__lﬂlyz3

b (w5 (v)by (v).

Finally, apply relations (4.11) between b (u) and h; (v) and use the invertibility of by (u) to
come to the relation

S A az3(x
( on(r) __(e-d7) >qf§1(uq2)h5<v>+( ol 1y T (0)ha (v)

(w=a?)(z—a")  (qz—q) T—q7?)(r—q

_ gz —1) ¢—q -1 _

= 132( )f ( uq )+ ( )_ 5—f21(v)b3 (V). (4.19)
gz —q (qx —q 1)

It remains to use the formulas for a;;(u) to see that (4.19) is equivalent to the considered case

of (4.17). n

Lemma 4.11. In the algebra U(Em) we have

(¢ uzr — qua) (ug — g vy
(qus — g7 'ox) (g tug — vg)

b3 (v)b3 (w)

(q_lui - qv:F) (Ui —q g ; WhF(v) =

(qus — ¢ Mog) (¢ us — v

and

b ()b (v) = b3 (V)b (u).

Proof. We only give details for one case of the more complicated first relation by choosing the
top signs; the remaining cases are considered in a similar way. We begin with the following
consequence of (3.5),

) =) R D) a0 (0) + e R) (420

—(y_q2;y_q1)wu@waww£w»+@xw@xm@xm+am@Wgwwaw»,

where z = uy/v_ and y = u_/vy, and then express both sides in terms of the Gaussian
generators. The left hand side takes the form

1

(z—q2)(z—q"
1

(#—q2)(z—q"

) (a2 ()05 (1)l (v) + aa () €35 (u) Loy (v) + azs ()5 (u) 5 (V) ey (v)

_l’_

) (a22(2) 3 (w3 (v) + azs (@) €5 (w)fz(v)h3 (V).

The defining relations (3.5) also give

o T o 0 0) + o) 0 () + ) 051 0)
_ g
= q;/qllgm( V)03 (u) + (Zy_qq)lyfm( )63 (u)

so that the left hand side of (4.20) takes the form

_ 1
(wy_ql—lgl(v)e;z(u)eﬁ(v) + (Zy_qq_)lyem( )@1( Jerz(v)
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1
(z—a?)(z—q

A similar calculation shows that the right hand side of (4.20) equals

+ =y (a22(2) 635 (u)hy (v) + azs(@) 03 (u)f55(v)by (V).

r—1 n _ q— q_1 _ + _
me(v)ﬂzg(umz(v) + Wfﬂ(v)gm(u)gﬂ(v)
=+ (y — q2)1(y — qil) (a22(y)h2_(v)£;2(u) + a23(x)h2_(v)82_3(v)€;—1 (u))
Therefore, by rearranging (4.20) we come to the relation
(m — q2)1(x — qil) (a22(x)£3_2 (w)hy (v) + a23(x)€1~_2 (w)fz2(v)by (”))
_ _ -1
- R0~ = ) ) )
1

NS (a22(y)by (v)€35(u) + az3(y)b3 (v)egs (v)l (u))

(a—a My

qy—q ! U2 (0) 51 (w)ers (v).

y—1 -
- ng(v)@z(u)eu(v) -

Furthermore, by (3.5) we have

-1

it STy 4=0 -
0T — q_1£22(u)€11(v) + P q_lﬁlg(u)fgl(v)
y—-1 a—q 'y,
- ngl(“)€2+2(u) + (qy_q_)1€12(v)€§rl(u)7

which allows us to write (4.21) in the form

1
@—qqﬂw—{f

o ()b (0)

B 1
S y—a2)(y—q
(¢—a)

- rq_lyhg_ ()05, (w)ery(v).

) (a22(2) 35 (w)by (v) + azs (@) 6y (u)f5 ()b (v))

) (a22(y)by (v)035(w) + azs(y)by (v)egs(v) L3 (u))

Now transform the left hand side of this relation. Since

_ _ -1
Fa() () =~ () ) + W’fawwmu),

Cqy—qt

we have
for (V)05 (W)h3 (v) = Lo (V)07 (V) T (Wb (v)
Ny

—1 — a0
= @) )b () + (Zy_qq

which equals

(a—a My

Ll_l@(v)ﬁﬁ(uwﬁ(v)*lbz_(@ Al— (o (0)eF; (u) iy (v) ™"y (v)

qy — ¢

(4.21)

(4.22)

- U1 (v)e 5 (V)6 (u)l; (v) 1y (v),
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_ 1
T )5 s 0057 0.

Furthermore, by (3.5) we have

q;thJKBOO&i@0+-%;i?;zxegooeﬁ@o
—-q;{fétlﬂadv)fﬁ(u)%—(Z;i?;iayz;xv)@;(u)
and so
@) = e e) + e we
e b ) ),

Therefore, the left hand side of (4.22) is equal to

) a1y (2005 (0) % () ()03 )

1 (g —

-l - )q(l)g Y iz )6 ) -
(a—a ")’

(qz —q V) (qy—q

B
M@w)bz(v)

+

_1)bg(v)hf(u>h;<v)‘1hg(vy

Similarly, the right hand side of (4.22) takes the form

1
—a?)(y—q
— -1 -
= <qZ —)5%2 by e ) () -
(q— qfl)zy
(v —a ) (ay —a7)

Dy (a22(y)b3 (V)35 (u) + azs(y)bs (v)ess (v)E3; (w))

— g 1)?
wm(v)@(u)

+ b3 (v)b7 (v) 'Y (w)b3 (v),

and taking into account the relation b, (v)hy (v) = by (v)h; (v), we get
1
(z-¢7?) (@ —a"
— g ! —1
)@ ) o ) -
(a2 —q7") (gz—q

e qz)l(y mp (a22(y)b3 (v)E35(w) + az3(y)by (v)egs(v) L5, (u))
| _ _—1)\2

laa )yfy 5 l)hg(v)eﬁ(v)ﬁgl(u) - ((Iqi)?;bg(v)férg(U).

(qy—q 1) (qyfq 1)

It follows from (4.13) that f; (u)bi (u) = ¢ b (u)f3; (ug?) which implies

) (ag2(x)035(w)h3 (v) + ags(2)05 (u)fz (V)b (v))

e
(qq)l)g@(U)bz(v)

P31 ()b (w)efs(u) = qby (w)fz; (ug®) ey (u) = by (w)er ()i (ug?) — abyf (u) efy (u)i3, (ug?).
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Furthermore, (4.14) gives

i (Wb (w)efy(w) = gbf (w)efy(w)s (ug?) + bf ()b (ug®) ™ b3 (ug®) — b3 (u)
and so

() = abf (wyefz (W) (ug®) + bT (Wb (ug®) "6 (ug®).

Therefore, the left hand side of (4.23) takes the form

ag2(x —q! 2:U
o) (2 —
+(x_qf‘ij’((?_q_l)%w)fg?(v)b;(v)—<q T)E D) s iz b7 )

(¢ —q7)

(ot + 0 st ) s 0

Finally, by using the (4.19) we can write the left hand side of (4.23) as

az(z) (q—q_l)zl’ + T N I
@—q2)(—q) - (@0 —a1)° by (w)by (ug”) by (ug®)by (v)

9@ =) e g ()i ().

* qr —q !

Similarly, the right hand side of (4.23) equals

N2
(st ) o o o ) o

+ METQ(U)%(U)% (ug’)-

Cancelling equal terms on both sides and applying (4.10) and (4.11) we get
_1\2 _
( ags () n (a—¢7") x) ¢r—1 ¢’y —gq

r—q ) (z—q") (qz—g 1)) Pr—q Py-1

_ az2(y) (q_qil)zy r—1 qu—q ' | - +( N\t 2\ 1
- (y—q‘Q)(y—Q‘1)+(qy—Q‘1)2 g1 y—1 "(Wh @b (ug)br (ua”)

Recalling the formula for ass(u) and using the invertibility of by (u), we come to the relation

r—1)(qr — q 2 -1 —q?
(x(_q_f)(gq%fq_)z) 0 (0 b (0) = = _)2) b ()03 (ug?).

(v—a)(a®y —q
which is equivalent to the considered case of the first relation in the lemma. |

1
by ()b (ug®)by (0)b] (ug?) ™

4.4 Relations for low rank algebras: type D

As with the case of type B, a key role in deriving relations in U (EM) between the Gaussian
generators will be played by Theorem 3.7 and Proposition 4.2. This time we will need relations

in the algebra U(R[Z]) in type D associated with the semisimple Lie algebra o4.
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Lemma 4.12. The following relations hold in the algebra U(Rm). For the diagonal generators
we have

b7 (w)b; (v) = b7 (V)b (u), b7 (Wb (v) =bF (V)b (),  i=1,2,

BE(0F (0) =05 0T (), ST (0) = S b ()b (w).
Moreover,
(e (0) = —E U oy + IO e
Cquy —q Mo quy —q log TN
_ No

b (u)ely (0) = el (v)hi () (q‘; "q_l)v F W)t (),

u v — 1 u
i (i () = = T 0T WA q(ji qq)lj; 2 (Wb (u),

u—v (q q 1) + +
f21( )fh( ) qu _ ( )f21( )+ qu—qlv 21( ) 1(“)7

and

‘12102 ur —vg 2012 U — v 12

e 5(0) = L h )iy ) — T )t o),
0 (0 = "Lt ) - L g gng o,
5 (0 () = = o) — ) ().

For the off-diagonal generators we have

ch()eh(v) = - m SHORS %eﬁ(u)2+meﬁ(v)eﬁ(u),
ey (w)edy(v) = —M@W - meﬁm) + giq;q;”ea( Jeia(w),
(W () = M%W + Mﬁ O WT( ) ()
fa1 (u)fay (v) = mﬁl(uﬁ + m 21 (v) + Z:ﬁlq—lvbl( )i (w),

together with

— v — o u
[e5(u), 13, (v)] = Mb;( )b7 (v) Mh?(ﬂ)*ﬁ(ﬂ)*l

U:F_'Ui Ui_'U:F

N
[e3(w), i (v)] = w(hg ()05 ()" = by (Wbt (w) ™).

u

Proof. The generating series E;‘;(u) with 4,7 = 1,2 satisfy the same relations as those in the

algebra Uq(Q/;\IQ); cf. Section 4.2. Therefore, all relations follow by the same calculations as
in [8]. |
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Lemma 4.13. In the algebra U(Rm) we have

e33(u) = faz(u) = 0.

Proof. By Corollary 4.3,

-1
+[1 +[1 g u—qu)(u—v) ip +[1
522[ ](u)£23[ ](U) = (qS,L — q—lv) ()u — q—lv) 523[ ](U)Em[ ](u)

Hence £2i2[1] (u)€2i3[1] (v) = 0. Since the series h3 (u) is invertible, we get ¢33(u) = 0. The second
relation follows by a similar argument. |

Lemma 4.14. All relations of Lemma 4.12 remain valid after the replacements

hzi(u) = h?(“% eﬁ(“) = efg(u), eQil(u) = e3i1(u),
ﬁcz(u) = fﬁ(u)y f§t1 (u) — fej,tl (u).

Proof. In view of Lemma 4.13, this holds because the series €$(u) with 4, j = 1,3 satisfy the

same relations as in the algebra U, (5[2). |
Lemma 4.15. In the algebra U(E[Z]) we have

b3 (w)b3 (v) = b3 (v)b3 (w),

(¢ lug — que)(us —vg) 4 WHF (v) — (qflui — qv;)(ui —vg) T ()0 (0
(qua — g "o) (us — g log) 2 (b3 (v) = (qus — g 'vg) (us — g o) g (V)3 (u).

Proof. By Corollary 4.3 we have

(¢ 'us — qug)(ux —v) 2y, |
(QUi - qilv;) (ui — q*lvqc) lyy " (u)lzy™ (v)
(¢ us —que) (ue —ve) oy, e
(qu:I: - q_IUJF) (ui — q_lv¥) 33 (v) 22 (u)

Writing this in terms of the Gaussian generators and using Lemma 4.13 we get the second
relation. The first relation is verified in the same way. |

Lemma 4.16. In the algebra U(ﬁm) we have

%4(“) = —ei(u)eﬁ(u) = —3?3(16)31%(“)7

Fii (w) = —fa; (u)fz; (u) = —F33 (w)fay (w), (4.24)
and

9%2(“)@3(”) = QTQ(’U)QE(U)? eﬁ(u)eli?)(v) = eﬁ(v)eﬁ(u),

for (W)Fd; (v) = 531 (v)Fs (w), far ()31 (v) = far (0)fa (w). (4.25)

Proof. The arguments are similar for all relations so we only give details for the first equality
in (4.24) and the first part of (4.25). The defining relations (3.4) give

1 4
> an(u/v)t(v)6; ()

o (u)E(v) = —————
12(w)li3(v) (u/v—q—2)2 £
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and
1
0 (u)l (v) = —2 Zm /)05 (V)6 (u).
(’LL/’U —4q i=1
Hence we can write

—1)(q"'u/v —q)

—2
o = = )
“2u/v 1 ¢)u/v
+ qu/v/_qzﬁ:Q( )05 (u) + (qu/vi)l/gﬁ (u)f3;(v).

Using again (3.4), we get

u/v—

_ 1
e — o RO W) + T () ()

eﬁ(“)ﬁz(“) qu/v

Therefore, (4.4) is equivalent to

71'U/ v
L 5 )b () eh) e 0) — b ()b (0)e )

(@ -1) (g u/v—q)
(u/v—q )u/v—l)

‘|‘(qu/;z)1u/vhli(u)b1( )(214( )—}—e12( )elifi(v))-

Since b (v)hi(u) = b (u)bhE(v) and the series h(u) is invertible, we come to the relation

(@~ (¢ "u/v—aq) 4
(u/v—q2)(u/v—1)

AT UYL ek ).

u/v—1
Setting u/v = 2, we get ¢f(v) + ¢f;(v)ei5(v) = 0 which is the first relation in (4.24).
For the proof of the first part of (4.25), consider the relations

b ()b (u) (e7y (1) + ey (u)efy(u)

¢ 'ufv—q, 4 + + + + +
(e (w)erz(v) — e (v)ez(w) = (e14( ) + ep(u)er3(w)

u/v—1

() (v) = ( /: - Zazz [0 6, (0) £ ()
Ux [Vt — i=1
and
4
W = S aulur /o) O o)
Us /U — i=1

which hold by (3.5). As with the above argument, they imply

Ly Jog —

W(ei(u)ﬁg(v) — e_]EQ(v)eﬁ,,(u))
2 Ly fvy —

= el q))(eﬁ<u>+eﬁ<u>e%3<u>)

(ug/ve —q72) (ug/ve — 1

1 )ux /v
+ g qu/quz j{ - (ef4(v) + efy(v)ef3(v)).

Using (4.24), we get 5 (u)ef3(v) — ey (v)efs(u) = 0. [
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Lemma 4.17. In the algebra U(Rm) we have

%2 (w)efz(v) = e1qt3(’0)31i2(u)7 eitQ(u)eitS(v) ﬁ(v)ei (u),

fr(wif () =W, 5w () = 5 ()55 (W)

Proof. All relations are verified in the same way so we only give details for the first one with
the top signs. By the defining relations (3.5), we have

1

€1i2(“)ﬁ3(“) = 2 Zaﬂ g [va )0 (v ) o (u).

(u:F/Ui_q i=1

Using the Gauss decomposition and (4.24), we can write the right hand side of (4.4) as

(33—1([2)2 (—a12(2)by (v)b7 (w)efy(u)efs(w) + aze(x)by (v)er, (V)b (u)efs(w)

+asa(2)by (v)egz (V)b (Wery(w) — asa()hy (v)epy(v)ers(v)by (u),

where © = u_/vy. Note that ef5(u)ef;y(u) = ef;(u)ef,(u) by (4.24). Hence, using the relations
between b7 (u) and the series ¢j,(v) and ej3(v), provided by Lemmas 4.12 and 4.14, we can write
the right hand side of (4.4) in the form

1 _ — o Vg
b7 @07 () (12T el + b ) e o)

— a2 %0z
(m(i 1)(‘237 z 3_2) (e13(v)ef5(u) — QE(U)Q:),(U))).

On the other hand, by the relations between ¢f5(u) and by (v), the left hand side of (4.4) can
be written as

+

-1

- o
b7 ()b () (‘Q{j’”’_lleyu)e;g(v) ylama)e

T —1 21_2(71)91_3(”)) .
Hence, due to (4.25) and the property by (v)h (u) = b7 (u)h (v) we get
er3(v)efy(u) = efy(w)es(v),
as required. |
Lemma 4.18. In the algebra U(EM) we have
ey (1) = —ei3(w), ey (1) = —eis(w), Fiz (1) = —fa; (w), Fia () = —fz; (u).
Proof. We only verify the first relation. By Proposition 3.3, we have the matrix relation
,C:t(u)_lgi 2] (u) — D[2]£:|: (uq—Q)t (D[Q])—l

Take (4,4) and (2,4)-entries on both sides and use the property ex;(u) = 0, which holds by
Lemma 4.13, to get

bi (ug™?) = b3 (u) "5 P(w)

and

thi(uqu)ei%(uq—z) —e5y(u)by (u) ™! 3B (u).
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This implies
thi(uq*)efg (uq_Q) = —¢qy(u)by (ug™ 2)-
By the relations between hi (u) and ei3(v) from Lemma 4.14, we also have
g by (ug?) etz (ug?) = 3wy (ug™?).
By comparing the two formulas we conclude that ei;(u) = —e3; (u). [

Lemma 4.19. We have the relations

and

T —
-1 _ -1 U
(s () = Lo ) >+(quﬁv)hf$<v>eﬁ<v>,
-1 P AP
b (0)fF; (w) = T (Wb (0) + U ),
1:I: Vx u:_tl VE
O ) = T ) + ) ), (4.28)

Proof. We only give a proof of one case of (4.26) and (4.28), the remaining relations are verified
in a similar way. As before, we set x = uy/v_ and y = u_/vy. The defining relations (3.5)

imply

x—1 _ (g—q )= _
i (u)l T (u)l
g —q 12(w)ls; (v) + p——] a2 (u)li; (v)
y—1 (- Ny, o+
=Vl (vl (u) + ——Z=los (V)7 (u). 4.29
p——— 51(0) 015 (u) p— 52(0) {7 (u) (4.29)

Taking into account Lemma 4.13, we can write the right hand side as

q qy —4q

_ _ —1
0 (e ot + UL )

Using again (3.5), we get

o _ —1
()l () = y—l_lfaw)ﬂa(uw(q—q_)f’fu( et (u).

qy —4q qy —4q

Therefore, (4.29) is equivalent to

T — —q Yz
qqulgm( )z (v) + (Z qq )1 U (u)lry (v) = F5 (V)5 () (v).- (4.30)

By using the relation between f3; (v) and by (u) from Lemma 4.14 bring the right hand side to
the form

_ g1 €
(ijq_)lfgl(u)bf( Jefs (u)by (v).

r—1

W[ﬁ(“)f:ﬂ( )%2( )by (v) +
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On the other hand, Lemma 4.13 implies that the left hand side of (4.30) equals

r—1

— b7 (u)efy(w)fs (v)b7 (v) +

(¢—q ')z
qr —q qr — g

1 f{fl (U)bf(u)eﬁ(u)hf (v),

thus proving that [eﬁ(u), fa1 (v)] = 0.
Now turn to (4.28). The defining relations (3.5) give

_ 1 T 4
ME?TQ(U)EI:;(U) = (qu_2)2 Zai3(y)€§£(v)€1+7;l(u)- (4.31)
a i=1

r—1
T (u) il (v) +
W)l ()

By Lemma 4.13, the left hand side can be written as

qr — g1 by (u)efs(w)bs (v)
B
<qxx_ql—15;r(u)ef2(u)f§1(v) + (Z:c—qq—)l ()b (w)ely(u )) by (v)ers(v).

Due to (4.26), this expression equals

o (W)eh ()b (0
+ (q;__ql_lbf(u)fgl(v) + mf;(u)hf(u)) eip(wbhy (v)er3(v),
which simplifies further to
o (e (005 (0) + T (0) (1))

by the relation between by (u) and f3; (v) provided by Lemma 4.14. Furthermore, by (3.5) we
also have

i) = - S a0

so that the left hand side of (4.31) becomes

qr —q -

L ey by (o) + 2 & Zalg 0 (0) ().
(—q =1

Using Lemmas 4.13 and 4.18, in terms of Gaussian generators we get
T —
prr—— 1[11( u)ely(u)b3 (v)
—1

— (qyy—q—1)2((y - 1)h§(v)bf(u)ef2(u) + (q - q_l)ybg(v)eﬁ(v)f)f(u))'

As a final step, use the relations between b (u) and ej,(v) and those between b (u) and b (v)
from Lemmas 4.12 and 4.14, respectively, to come to the relation

1
el (w)h3 (v) = qyy o5 (v)¢f <>+(qu)

as required. |

b3 (v)era(v),
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Lemma 4.20. In the algebra U(Rm) we have

“Lyur —qu —q¢ Hu
ety (b3 (v) = LTF I ()edy (u) + Mh?(v)%(v),

p— p—
5 005(0) = T Db o)ty ) + LT ) ) o),
0O 0 = S ) + T T e,
0 () = T L ) + ) ),

Proof. The arguments for all relations are quite similar so we only give details for one case of
the first relation. By (3.5) we have

r—1 —q¢ Yz
Wfﬁ(u)@(v) + (Zx_qq_)l%(u)%(v) = - — ;aﬂ To(u). (4.32)

Taking into account Lemma 4.13, write the left hand side as

T e 08 () + T el ) () o)
— o Vg
O i e ).

y (4.27) this equals

b ()el 0 (0) + b (W (el )0
— o Vg
+(Zw_qq_)1f;(“)hf(“)eﬁ(u)efz(v)-

Then by using the relation between by (u) and f5; (v) from Lemma 4.12, we bring the left hand
side of (4.32) to the form

L ey (b (0) + o 0007 ()6 ()

By the defining relations between £3(u) and 1, (v) we have

4
(y_lq2)2 ; @i (y) 05, (0) 04 ()

and so the left hand side of (4.32) can be written as

21+3(u)€f2(v) =

et e )+ B QZazg £ ),

Hence by Lemma 4.13 relation (4.32) now reads

r—1

WW_( )%3( )by (v)
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1
=g 7 (a22(y)by (V)07 (w)efy () + asa(y)by (v)egs (V)b (). (4.33)
Using the equality ¢y, (v) = —e3(v) from Lemma 4.18 and the relations between b (u) and ¢f;(v)

from Lemma 4.14, we find that the right hand side of (4.33) equals

_ o1 -1
la y 3 1 )y q.:— g1 by (w)by (v)ers(v),

T i (g (o) (w) +

where we also applied the relations between h{ (u) and b, (v). Now (4.33) turns into one case
of the first relation due to the invertibility of by (u). [

4.5 Formulas for the series z*(u) and 3% (u)

We will now consider the cases of odd and even N simultaneously, unless stated otherwise.
Recall that the series 2% (u) and 3% (u) were defined in Proposition 3.3. We will now indicate
the dependence on n by adding the corresponding superscript. Write relation (3.6) in the form

DL*(ug) D™ = £5(u) ™5+ P (w). (4.34)

Using the Gauss decomposition for £¥(u) and taking the (N, N)-entry on both sides of (4.34)
we get

i (ug) = b (w) 15" M (w). (4.35)
Lemma 4.21. The following relations hold in the algebra U(R[n]):

Q?EH)' o () = =5, (uég™) and fii/(iﬂ)/(“) = —fi i1 (uéd®) (4.36)
for1<i<n—1.
Proof. By Propositions 3.3 and 4.2, for any 1 <i < n — 1 we have

L+ n—it]] (u)flj:t [n—i+1] (u) = pl—itl] p£[n—it+] (u£q2i*2) (D["*l*l})_l7 (4.37)
where

pla—i+1] _ diag [ ¢ n—itl/2 0 g2, q_l/z,...7q_"+i_l/2] for type B,

diag [ ¢" ,...,q,l Lgt ... g for type D.

By taking the (i,7) and ((¢ + 1)’,4)-entries on both sides of (4.37) we get

i (ugq™ ) = b3 (u) ~15= " () (4.38)
and

— ¢y (W) b5 ()7 () = g b (ubg® ey (u€g™ ).
Due to (4.38), this formula can be written as

—¢(ipry (W) 07 (u€q® ) = b7 (u€q®?) ey (u€g™?). (4.39)

Furthermore, by the results of [8],

q bzi(u) eii,i—l-l(u) = eii,i+1(uq2) f)f(u),
so that (4.39) is equivalent to

(Z+1 o (u )hi(ufqzZ %) = ez:‘i'ﬂ(uw%) hzi(%q%d),

thus proving the first relation in (4.36). The second relation is verified in a similar way. [
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Proposition 4.22. In the algebras U(E[n]) and U(R["]) we have the respective formulas:

n

5" Hbi (uég™)” H (w€d®™2) - by (Wi (ug),
2 (u Hhi (uéq®)” H (w€q®?) - oy (w) by (ug)
=1 i=1

for type B, and

Hh (uéq®)” Hh (u€q®?) - by (W (w),

Ay Hhi (uég®)~ Hhi (u€q®™2) - B (u) hE,, (u)

=1 =1

and for type D.

Proof. The arguments for both formulas are quite similar so we only give a proof of the first
ones for types B and D. Taking the (2,2')-entry on both sides of (4.37) and expressing the
entries of the matrices £ ™ (u)~1 and £ (u€)" in terms of the Gauss generators, we get

by (u€) + a1 (u) b (u€) ey (ug) = (b3 (w) ™" + ¢5 1, (Wb () 7' 5 (w) )5 (u).

As we pointed out in Remark 3.5, the coefficients of the series 3 " (u) are central in the respective

subalgebras generated by the coefficients of Ei ["]( )

above relation as

b3 ()™ () = by (u€) + Ty (u€) by (u€) e5(u€) — e, 1 (w) b (u€) T o (w)-
Now apply Lemma 4.21 to obtain

b () ™5™ 1 () = 03 (u€) + 2 (u8) b (u) €5 (u8) — iz (u€a?) b (u) 5 (ube®).
On the other hand, by the results of [8] we have

51( )212( )=4q 13?2(1@ )fﬁ(u), h1i(u) f%tl (UQQ) = q_lfi(l‘) fﬁ(“)a

. Therefore, using (4.35), we can rewrite the

and
u(lg—q")
u—v

[ei2(u), 1 (v)] = (b3 (0)b1 (0) ™! = b3 (w) b (w) ).

This leads to the expression
b () 15" P (w) = b (uge®) bi (uq®) ™ b (u).

Since 3+ [—1(u) = h;t, (u)hf(uqu), we get a recurrence formula
70 (w) = b (ugg®) b5 (ug) 5= ().

Here we need note that &€ = ¢>~V. To complete the proof, we only need the formulas of 3% (u).

Working with the algebras U (Rm) and U (E [2]), respectively, we find by a similar argument to
the above that

Brrr (1) 157 B w) = b7 (ug) by (ug) ™ iy (ug ™)
for type B, and

5 M) = by (w)hy (w)
for type D. |
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4.6 Drinfeld-type relations in the algebras U(E[n]) and U(R[”])

We will now extend the sets of relations produced in Sections 4.2, 4.3 and 4.4 to obtain all

necessary relations in the algebras U (RM) and U(R["}) to be able to prove the Main Theorem.
We begin by stating three lemmas which are immediate consequences of Corollary 3.8.

Lemma 4.23. In the algebra U(E[n]) we have

b (w)hE,, (v) = b, ()b (u),

Ut — V¥ + Ux — VU4 +
qur = qton P Wb (0) = T (0] (),

and
ez:",:i+1(u)hn+1(v) h 1(v)e “+1( u), eiﬂ(“)hfﬂ(v) = hfﬂ(v) ziz+1(u)a

f;lj-l,i(u)bn—‘,-l (U) h ( )fz+1 z(u) fz—i—l z(u) bn—‘rl(v) bn+1(v)f1+1 7,(u)
where i =1,...,n—1 for type B, andi=1,...,n— 2 for type D.
Lemma 4.24. In the algebra U(R[”]) we have

h;t(u) $n+1(v) = einﬂ(l’)bgt(u), h (u) +1(U) = einﬂ(“)h;’t(u)a

hi(“)fn«kl n(v) = fii#l,n(v)h?:(u)? h (u)fn+l n(v) = quL:Jrl,n(U)h;t(u)
fori=1,....,n—1 in type B, while

h;t(u)erjy,:—l,n—i-l(v) = e;lz:—l,n—‘,-l(v)h?:(u)’ [JZ:-E(U)QZF_LnH(U) = erqz:—l,n+1(v)b;t(u)a

bii(u)%ﬂ,nﬂ(”) = fﬁ+1,n71(v)hii(u)v bz‘i(u)ﬁ;»l,nfl(v) = ij:Jrl,nfl(v)th(u)
fori=1,...,n—2 in type D.

Lemma 4.25. In the algebra U(R[”]) we have

+ + + + + +
ei,i+1(u)en,n+1<v) = en,n+1(v>ei,i+1(u)7 ei,i+1<u)ejz:,n+1(v) = e7qzz,n+1<v)ei,i+1(u)a
+ + + + + +
fi+1,i(u)fn+1,n(v) = fn—i—l,n(v)fi—l-l,i(u)v fi+1,¢(u)ff+1,n(v) = ;F+1,n(’0)fz'+1,i(u)

fori=1,...,n—2in type B, while

+ + + + + +
ei,i+1(u)en—l,n+1(v) = en—1,n+1(v)°i,i+1(u)a ei7i+1(u)ei_1’n+1(v) = erf—l,n—i—l(v)ei,iﬁ-l(u)a
+ + + + + +
fi+1,i(u)fn+1,n—1(v) = fn+1,n—1(v)fi+1,i(u)a fiJrl,i(u)fI—i-l,n—l(v) = frirl,n—l(v)fiﬂ,i(u)

fori=1,...,n—3 in type D.
Now we consider the cases B and D separately.

Lemma 4.26. The following relations hold in the algebra U(E[n]) of type B:
(qu$ - q_lvi)ei—l,n(u)ein—kl(v) = (U i) nn—&—l(v)ei—l,n(u)
+(a— qil)vie;t—l,n—‘rl(u) (a4 1)“]Fe7f—1,n(v)ein+1(v)
— (0= q Duzel 1,1 (),
(qu - q_lv) eriLq,n(U)einH(U) = (u— v)einJrl(v)effl,n(u) + (q - q_l)v%il,nﬂ(“)

_ + + — +
—(¢-4q l)uen—l,n(v)%,nﬂ(v) —(a—q 1)uen—1,n+1(v)7
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and

(ui - v:F)fnn 1( )f11:+1 n(v) = (qui - qilv:!:)frq;rl,n(v)friz,nfl(u) + (q - qil)vq:fzirl,nfl(v)
- (q —dq 1U¥) i+1 n( ) in 1( ) — (q - q_l)uifqirl,nq(u)v
(U - v)fin—l(u)fi:-i-l,n( ) = (qu —q 1v)f7:|1:+1,n(v)frﬂz:,n—1(u) + (q - q_l)vﬁf—&—l,n—l(v)

- (q - qil)vfi—i-l,n(v)fin—l(v) - (q - qil)uff—kl,n—l(u)'
Proof. We will only prove the first relation. By (4.9) we have

(BT ()T (0) = BT W),y (V) (u)
I A - 1u
:*(q : )ibﬂ)nm(u)—i@ )

u 0 ()T (0): (4.40)
-

Uz
Relation (4.8) implies
-1

E L NEw) = PE ey T )

Us — Vi n—1,n Us — Vi n—1,n
so that (4.40) can be rewritten as

1 _ -1
%fﬁ( v)er ln(u)ein+l(v)+mhﬂ JeF 1 (@) 4 (0)

- h$( ) nn+1( )Q;Lt—l,n(u)

:Mfﬁ() ()_Mfﬁ() (v).
Uz — Ch—1 ,n+1 Us — Vs n 1,n+1
Since 7 (v) is invertible, this gives the first relation. [

A similar argument proves the counterpart of Lemma 4.26 for type D.

Lemma 4.27. The following relations hold in the algebra U(E[n]) of type D:

(qus — qilvi)efo,nfl(u)erTfl,nJrl(v)
= (ugx — Ui)eil,nﬂ(v)ef on—1(u) + ( - q_l)vieribf2,n+l(u)
—(q— q_l)uﬁf—znq( Jet 1 n(v) = (g - q_l)u$e7:'f—2,n+1(v)v
(qu - qflv) ei—?,n—l(u)e;t—l,n—i—l( )
= (u— v)ei:fl,n+1(v)e7jzi2,nfl(u) + (q - qil)miiznﬂ(u)
— (¢~ q_l)ueff&nfl(U)eriLfl,n+1(v) —(a— q_l)ueiiz’nﬂ(v),

and

(ug — U$)f1’:|l,:—1,n—2(u)f7’:f+l,n—l(U)
= (qus — q_lv:F)ﬁL:—s-l,n—l<’U)f7jz:—1,n—2(u) + (¢ — q_l)vﬂFf;FH,n—z(U)
- (q - qilv:F)fr:zF—&-l,n—l(U)fj—l,n—Q(v) - (q - q’l)uiffﬂ’n_z(u),
(u— U)ﬁ—l,n—Q(“)qu—i—l,n—l(v)
= (qu — q_lv) ff+1,n—1(v>ff—1,n—2(u) + (CI - q_l)vﬁﬂ,n—Q(”)
- (q - qil)vf1:i:+1,nfl(U)T;Ltfl,an(v) - (q - qil)ufal,nq(u)-
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The next lemma is verified by a similar argument with the use of Corollary 3.8.

Lemma 4.28. In the algebra U(R[n]) forallt=1,...,n—1 we have

+ + + + + +
ei7i+1(u)fn+1,n(v) = fn+1,n(v)ei,i+1(u)a ei,i—i—l(u)ffH»l,n(,U) = fiJrl,n(U)ei;H-l(u)?

+ + + + + +
fz‘+1,i(“)en,n+1(“) = en,n—i—l(v)fiJrl,i(u)’ fiJrl,i(u)ein—H(v) = einﬂ(v)fwl,i(u),

for type B, and for alli=1,...,n — 2 we have

+ + + + + +

ei,i+1(u)fn+1,n—1(v) = fn+1,n—1(’0)ei,i+1(u)a ei,i+1(“)f:§+1,n—1(v) = f7:'zz+1,n—1(v)ei,i+1(u)>

+ + + + + +

fi+1,i(u>en—1,n+1(”) = en—l,n—l—l(v)fiJrl,i(u)v fiJrl,i(u)ei—l,n-l—l(U) = Q;F—l,nﬂ(v)fiﬂ,i(u),
for type D.

We are now in a position to summarise the results of Sections 4.2, 4.3 and 4.4 and give
complete lists of relations between the Gaussian generators. The completeness of the relations
will be established in Section 5.

Theorem 4.29.

(i) The following relations hold in the algebra U( n) of type B. For the relations invol-
ving b (u) we have

b (Wb (v) = b7 (V)b (w), b (Wb (v) =bF (V)b (w), i=1,...,n,

) = b (), i<,

qui — ¢ lug qus
and

¢ Mg —qug ¢"Pur — g7 Pog

qus — g~ 'vg ¢ 2uy — ¢y

thrl ( )bn+1( )
1

v G S e )
qus — ¢ tox ¢~V 2ugp — ¢ 20y el ntl

The relations involving b (u) and in(v) are

U — V4

b () X;F (v) =

q(eivaj)u — q_(eivaj)vi
g (enidy, — gleas)y

b, ()X (v) = -
Ug — V

for i # n+ 1, together with

Xt(v) = (qus — v)(uz —v) +
hn-i-l( ) ( ) (UZF - qv) (quq: - qil’U) Xn ( )h
(ut — qu)(qus — g~

(qus —v)(ux —v)

1 (W),

)?f(v)fJi (u),

n n+1

hfﬂ(“)/y{(v) =
and

hn—‘,—l( ) ( ) = ( )bn+1( u), hn-‘rl( ) —(v) :Xz’_(v)hrﬁ;—l( ),

for 1 <i < n—1. For the relations involving X (u) we have

(u— qi(a“af)v)?ff (ug") " (va’) = (¢ u = 0) X (vg) X7 (ug')
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fori,j=1,...,n; and

[ (), X (0)] = di5(a—a7)
x (6(ug™/v)b; (v4) b (ve) — 8(ug®/v)bf (uy) 7' (us))

together with the Serre relations

Z Z [ } Ur(1)) Xij:(uﬂ(l))xjjE (U)Xii(uﬂ(l+l)) e Xii (tr(ry) = 0,(4.41)

e, =0
which hold for all i # j and we set r =1 — A;;.
(ii) The following relations hold in the algebra U(EM) of type D.

For the relations involving b (u) we have

b (b5 (0) = b7 (00T (W), b7 (Wb (v) =bF (Vb7 (u), =1, .n+1,
U+ _'U¥ + _ u¥ — U+ +
mhi (w)b(v) = 7qu¢ — g lug ?(U)hi ()
fori < j with (i,7) # (n,n+1), and
1, _ -1, _ _
T () (v) = T (o) ().

qut — ¢ o uyr — g log qus — ¢ og ur — g oy

The relations involving b (u) and in(v) are

u—v
b (w) X (v) = — =X ()b (),
gEa)y — g (e g,

(6110‘]) _ _(Ei?aj)
_ q u q v .,
bE(u) X (v) = = X7 (v)hE (u)

U+ —v

for i # n+ 1, together with

Ux —V

xt —
[]n+1( ) (U) - q_luq: —qu
-1

) = w»c;(v)bal(u),

b1 (W)X, (v v — 0

and
by (W)X,

while
hn—l—l( WX (v) = At (v )bn+1( u), bn+1( u)X; (v) = Xi_(”)h:fﬂ( )
for 1 < i< n—2. For the relations involving Xi( ) we have

(u — ¢ D) XF (ug’) X (vg?) = (¢F0*u — v) X5F (vg?) X (ug')
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forij=1,...,n—1;

(u — @) y) XF (ugh) XE (vg" 1) = (¢Fe)y — v) XE (vg" ) XE (ug?)
fori=1,...,n—1;

(u — gEem ) XE () XL (v) = (¢F @y — ) XE(0)XE (u)
and

(X (), X ()] = 6ij(q—q7")

x (6(ug™/v)b; (v4) " b (v) — 8(ug®/v)bf (ug) T 0 (us))

together with the Serre relations

5 S0} A ) ) A ) i) = 00042

TES, 1=0 i
which hold for all i # j and we set r =1 — A;;.

Proof. All relations except for (4.41) and (4.42) follow from the corresponding results in Sec-
tions 4.2, 4.3 and 4.4 by applying Theorem 3.7 and Proposition 4.2 and recalling the defi-
nition (4.5). The remaining Serre relations are verified in the same way as for type C |20,
Section 4.6] by adapting the Levendorski argument [22] to the quantum affine algebras. |

By using Theorem 4.29 and Proposition 4.1 we arrive at the following homomorphism theorem
for the extended quantum affine algebra US* (o) introduced in Definition 2.1.

Theorem 4.30. The mapping

Xf(u) — Xf(u), for i=1,...,n,
X, (u) = X; (u), for i=1,...,n,
hf(u)%hj:(u), for j=1,...,n+1,

defines a homomorphism DR: U (on) — U(R), where XF(u) on the right hand side is given
by (4.4), (4.6) and (4.7).

We will show in the next section that the homomorphism DR provided by Theorem 4.30 is
an isomorphism by constructing the inverse map with the use of the universal R-matrix for the
algebra U, (o) in a way similar to types A and C see [11] and [20, Section 5].

5 The universal R-matrix and inverse map

We will need explicit formulas for the universal R-matrix for the quantum affine algebras ob-
tained by Khoroshkin and Tolstoy [21] and Damiani [6, 7].

Recall that the Cartan matrix for the Lie algebra oy is defined in (1.1) and consider the
diagonal matrix C' = diag[ri,72,...,7,] with r; = (o, ;)/2. The matrix B = [Byj] := CA is
symmetric with B;; = (a4, ;). We will use the notation B = [BZ]] for the inverse matrix B~
We will also need the g-deformed matrix B(q) = [B;;(q)] with B;;(¢q) = [Bij]q and its inverse

B(q) = [Bij(q)]; see (1.2). Both n x n matrices B and B(q) are symmetric and for N = 2n + 1
(type B) we have

Bij=j for j<i
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for i =n,
[7]q ([” —ig—[n—i- 1]4)
[n]q —n—1],

whereas for N = 2n (type D) the entries are given by

for j<i<n,

J for j<i<n—2,
B.— j/2 for j<n—-2, i=n-1,n,
Y In/4 for i=j>n-1,

(n—2)/4 for i=n, j=n-—1,

and

for j<n—-2, i=n-—1n,

[n]q . .
f =j=n-—1,
2Ry T
M for i=n, j=n-1.
[2](1 [2]qnfl

As with type C [20, Section 5|, we will use the parameter-dependent universal R-matrix
defined in terms of the presentation of the quantum affine algebra used in Section 2.1. The
formula for the R-matrix uses the h-adic settings so we will regard the algebra over C|[h]] and
set ¢ = exp(h) € C[[A]]. It is well-known that the (C(ql/Q)—algebra U,(gn) actually embeds inside
the C[[h]]-algebra Uy(gn) due to the flatness of the latter as a deformation of U(gy). Define
elements hq, ..., h, by setting k; = exp(hh;). The universal R-matrix is given by

R(u) = R7 ()R ()R<’(u), (5.3)
where
R>O(u) = H H CXPg; ((qi_l - Qi)ukEa+k5 ® Fa+k5)7
€A k>0
R<(u) =T~ H H exPy, (¢ — @)U B_piks ® Fogins) T
aEAL k>0

with T = eXp(—hBij h; ® h]’) and

- ' —a)(a" ~0)

q qi)\4q q k - _

R°(u) = exp : jl : d A Bij(q")ubq" a; @ aj_rg | T
k>04,5=1 =4 [Klq

(see [6, Definition 4] for the description of the order of the products in R~" and R<?). It satisfies
the Yang—Baxter equation in the form
ng(u)ng (uvq_CQ)Rgg (’U) = R23 (’U)ng (UUQCQ)RH (u) (5.4)

where cp = 1 ® c® 1; cf. [12].
A straightforward calculation verifies the following formulas for the vector representation of
the quantum affine algebra. As before, we denote by e;; € End C!V the standard matrix units.
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Proposition 5.1. The mappings ¢=</% — 1,

ZL',j’; — —q_ik€i+17z’ + q—(2n—l—i)k€i/7(i+1)/’
Ty _q_Zkei,i+1 + q_(Qn_l_l)ke(iH)',z"a
(Klg o —iny - —(2n—1-i)k(, —
Qg > Tq(q ik (q k€i+1,i+1 - qkeiz‘) +4q (2n—1-0)k (q kei’i’ - qke(i—i-l)’(i-i-l)/))v

ki = qleiyriv + e w) +q (e + ey (iv1y) + > €jj
AL (4 1)
fori=1....n—1, and

m:jk = [2](11,/12 (_qinken—kl,n + qi(nil)ken’,n-i-l)y

‘,L.r:k N [2]37/12 (_qfnlc (n—1)k
2K]q,

Ak — T(_q—(n—l)kenn + (q—nk _ q_(n_l)k)enJrl,nJrl) + q—nkenln/),

-1
kn — qen”n/ + q €nn + Z ejj7
j#n,n!

€n,n+1 +q en—i—l,n’):

in type B, and the mappings q=°/ — 1,

+

—ik —(2n—2—i)k
Ty —q et +q (@n=2-4)

€t (i+1)>

- —ik —(2n—2—i)k
Ty = —q Vet 4 (2n—2-4) €(i+1),i

Qi — [k;;h(qik (q7k€i+1,i+1 - qkeu‘) + g @20k (qikei’i’ - qke(i+1)’(i+1)/))a
ki = q(eir1it1 +eiri) + q_l(eii + e(i+1)/,(i+1)/) + Z €jj,
G411, (i41)
fori=1,....n—1, and
ﬂfﬁk = q_(n_l)k(—enﬂ,n—l + ent2,n),

- —(n—1)k
Tt 4 (n—1) (_enfl,n+1 + en,n+2)a

k i _ _
ank = [l]{;lnq (n l)k(q ken—i-l,n-i—l - qken—l,n—l +q k€n+2,n+2 - qken,n))
ky — q<€n+1,n+1 + en+2,n+2) + q_l(en—l,n—l + en,n) + Z €jj,

j#Fn—1n,n+1n+2

in type D, define a representation mwy: Un(on) — EndV of the algebra Uy(on) on the vector
space V = CN[h].

It follows from the results of [12, Theorem 4.2] that the R-matrix defined in (1.5) coincides
with the image of the universal R-matrix:

R(u) = (my @ mv) R(u).
Introduce the L-operators in Uy(oy) by the formulas
L (u) = (id@my) Rar (ug’?), L™ (u) = (id @ my) Riz(u'q~/?) "

Recall the series z*(u) defined in (2.2). Their coefficients are central in the algebra US(oy);
see Proposition 2.2. Therefore, the Yang-Baxter equation (5.4) implies the relations for the
L-operators:

R(u/v)Ly (u)Ly (v) = Ly (v) LY (u)R(u/v),
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Rus fv-)Lf (u) Ly (v) = Ly () L (w) R(u_/v4),

where we set

It H ot u£—2m 1 (ug—Qm—Q)—l’
m=0

I~ H 5 5 2m— 1 ( £—2m—2)_1.
m=0

Note that although these formulas for the entries of the matrices L*(u) involve a completion
of the center of the algebra U(‘;Xt (on), it will turn out that the coefficients of the series in u*!
actually belong to U;Xt(ﬁN); see the proof of Proposition 5.5 below. Thus, we may conclude
that the mapping

RD: L*(u) — L*(u) (5.5)

defines a homomorphism RD from the algebra U(R) to a completed algebra US*'(oy), where
we use the same notation for the corresponding elements of the algebras.

By using the vector representation my defined in Proposition 5.1, introduce the matrices
F*(u), E*(u) and H*(u) by setting

Ftu) = (idem) R (wg?),  Ef(u) = (id @ mv) R (ug”?),

140 = (R o) T =027 ) % ),
and

E-(u) = (id® WV)R>°( —1)‘1, F~(u) = (id @ )R (u;") ™,

H (u) = (id@7mv) (R ! ﬁ 2 (wg?m ) T (wem ).

m=0
The decomposition (5.3) implies the corresponding decomposition for the matrix L* (u):
LE(u) = FE(u)H* (u) E* (u).

Recall the Drinfeld generators :thk of the algebra U, (0y), as defined in the Introduction, and
combine them into the formal series

— - k + >0 _ + k
- Zwi,fku ) Ty (u)™" = Z%,—ku )

k>0
=> ajut,
k>0
Furthermore, for all i = 1,...,n — 1 set
fHw) = (= a7 a7 (weg™) ™"
frw) = (7 — @)y (u_g™)~"
whereas

£ = (g —ay") 21422y (upq™) ™"

k>0

— + .~k
= Z Ly

k>0

, et (uw) = (g0 —an ") (217 2} (g™
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Fow) = (g7" = an) 213227 (ug™) ™", en () = (g7 — an) (282 2 (uyq™) ™"
for type B, and

S @) = (gn — a3 )y, (ugq™

fo ) = (0" = an);, (u—q”
for type D.

Proposition 5.2. The matriz F*(u) is lower unitriangular and has the form

- -
i (u) 1 O
F¥(u) = ) 1
—fniq (u£q2(n—1)) 1
%
i —fi (u€g?) 1]
for type B, and
- -
fifw) 1 O
-
F - U 1
~faw) —fi(ug ) 1
*
I —fi (uég?) 1]

for type D.

Proof. The argument is a straightforward verification relying on the formulas of Proposition 5.1;
cf. [20, Proposition 5.2]. [

As in Section 2.2, we will assume that the algebra U, (02,) is extended by adjoining the square
roots (kn_1kn)*'/? (no extension is necessary in type B).

Lemma 5.3. The image (id @ my)(To1) is the diagonal matriz

diag Hkb,Hkb,...,ﬁkb,.. kn 1,k;,...,ﬁkb1]
Lb=1 b=i b=1

for type B, and

[n—2 n—2
diag Hkb(k;n_lkn)l/?,Hkb(kn_lkn)l/Q,..., (kn_1kn) 2, (k72 k)2,
=1

(k) 2, (R k) ™2, H/-c (Fn—1kn) 1/2]

for type D.
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Proof. The calculation is the same as in type C; see [20, Lemma 5.3]. [

Proposition 5.4. The matriz E*(u) is upper unitriangular and has the form

1 et (u) ]
1 ef(u) *
1 ef(u)
E*(u) = L —ey(uég®™?)
1' —eéﬁ (u§q4)
O 1 —eli (u§q2)
L 1 -
for type B, and
1 e (u) T
*
1oey y(u) ef(u)
1 0 —e; (u)
E*(u) = 1= ()
O 1 —ey (uéq?)
1 —61i (uqu)
L 1 -

for type D.

Proof. By the construction of the root vectors E_, x5 and the formulas for the representa-
tion 7y provided by Proposition 5.1, it is sufficient to evaluate the image of the product

Ty [T exwy, (67" = @) u"a" > P ik © Baiins) Ton (5.6)
k>0
with respect to id®my, for simple roots o; with ¢ = 1, ..., n. Using the isomorphism of Section 2.1,

we can rewrite the internal product in terms of Drinfeld generators as
_ E _ 1
H expy, ((¢; f- %) (“qc/z) q kcxz—kki ® ¢"°k; %k)
k>0

The calculation breaks into a few cases depending on the type (B and D) and the value of i,
but it is quite similar in all cases; cf. [20, Proposition 5.2]. We will only give details in the case
i =n in type D for the matrix E*(u). Note that ¢, = ¢ and so by Proposition 5.1,

(id® my) H equ((q*1 —q) (u_)ka;;_kkn ® chkrjlx;k)
k>0

= H exp, (Q(q_l —q) (U—)kx;:,kkn ® q_(n_l)k(_en—l,n+1 + €(n+1)',(n—1)'))-

Hence, expanding the g-exponent and applying Lemma 5.3, we find that the image of the
expression (5.6) with ¢ = n with respect to the operator id ® my is found by

1- Q(q_l - Q) Z ((kn—lkn)_1/2x:,7k(kn—1kn)1/2) (u_q—(n—l))k ® €n—1,n+1
k>0
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e —a) Y (ki vkn) e (bt k) ) (umg™ D) @ ey oy
k>0

:tAij +

By using the relations k; x;.tk k- 1= q; Ty, We can write this expression as

_ (m— 0 _ —_1\>0
1= (¢ = q)a) (u—g ") @en i+ (7' = @)a (u-8a"")7 @ eaty (mo1y
=1+ €:{(U) X en—1n+1 — e:{(u) & €(n+1)’,(n—1)-

This proves that the (n — 1,n + 1) entry of E™(u) is e, (u), while the ((n + 1), (n — 1)’) entry
is —e;f (u), as required. [ |

In the next proposition we use the series 2 (u) introduced in (2.2). Their coefficients belong
to the center of the algebra U;Xt (on); see Proposition 2.2. For a nonnegative integer m with
m < n we will denote by z* [~ (x) the respective series for the subalgebra of U (on), whose
generators are all elements X fk, hfk and ¢%/?2 such that i, j = m+1; see Definition 2.1. We also
denote by &Ml the parameter ¢ for this subalgebra so that

ehnml _ q 2 2mtl for type B,
q—2n+2m+2 for type D.

Proposition 5.5. The matriz H*(u) is diagonal and has the form

Hi(u) = diag [h?(u), .. ,h:f(u), hfﬂ(u),zim(u) hf (ufm)*l, 2T ["](u) h{c (uf[”])fl]
for type B, and

H*(u) = diag [h?(u), R (), 2 () hE (u{m)fl, 2 Pl Rt (u{“ﬂ)*l]
for type D.

Proof. The starting point is a universal expression for H¥(u) which is valid for all three
types B, D and C (the latter was considered in [20, Section 5]) and is implied by the defi-
nition. In particular, for H*(u) we have:

n 1 -1
q;  —q)\q9; —4q) k -
H*(u) = exp E E ( _2( J ) ——Bii(¢")uFa; @ my(aik)

E>014,j=1 ¢ —4q [Klq
% (id ® WV)(TQI) H »+ (u§_2m_1)z+ (u§—2m—2)—1’
m=0

where the matrix elements B;;(g) are defined in (5.1) and (5.2). The calculation is then per-
formed in the same way as for type C' with the use of Propositions 2.3, 5.1 and Lemma 5.3; see
[20, Proposition 5.5]. [ |

Taking into account Propositions 5.2, 5.4 and 5.5 we arrive at the following result.
Corollary 5.6. The homomorphism
RD: U(R) — U;Xt(ﬁN)

defined in (5.5) is the inverse map to the homomorphism DR defined in Theorem 4.30. Hence
the algebra U(R) is isomorphic to Us* (o).

Corollary 5.6 together with the results of Sections 2.2 and 4.5 complete the proof of the Main
Theorem.
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