Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 043, 49 pages      arXiv:1911.03496      https://doi.org/10.3842/SIGMA.2020.043

Isomorphism between the $R$-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types $B$ and $D$

Naihuan Jing a, Ming Liu bc and Alexander Molev c
a) Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
b) School of Mathematics, South China University of Technology, Guangzhou, 510640, China
c) School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

Received November 18, 2019, in final form May 10, 2020; Published online May 21, 2020

Abstract
Following the approach of Ding and Frenkel [Comm. Math. Phys. 156 (1993), 277-300] for type $A$, we showed in our previous work [J. Math. Phys. 61 (2020), 031701, 41 pages] that the Gauss decomposition of the generator matrix in the $R$-matrix presentation of the quantum affine algebra yields the Drinfeld generators in all classical types. Complete details for type $C$ were given therein, while the present paper deals with types $B$ and $D$. The arguments for all classical types are quite similar so we mostly concentrate on necessary additional details specific to the underlying orthogonal Lie algebras.

Key words: $R$-matrix presentation; Drinfeld new presentation; universal $R$-matrix; Gauss decomposition.

pdf (583 kb)   tex (39 kb)  

References

  1. Beck J., Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994), 555-568, arXiv:hep-th/9404165.
  2. Beck J., Convex bases of PBW type for quantum affine algebras, Comm. Math. Phys. 165 (1994), 193-199, arXiv:hep-th/9407003.
  3. Beck J., Chari V., Pressley A., An algebraic characterization of the affine canonical basis, Duke Math. J. 99 (1999), 455-487, arXiv:math.QA/9808060.
  4. Brundan J., Kleshchev A., Parabolic presentations of the Yangian $Y({\mathfrak{gl}}_n)$, Comm. Math. Phys. 254 (2005), 191-220, arXiv:math.QA/0407011.
  5. Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994.
  6. Damiani I., La $R$-matrice pour les algèbres quantiques de type affine non tordu, Ann. Sci. École Norm. Sup. (4) 31 (1998), 493-523.
  7. Damiani I., The $R$-matrix for (twisted) affine quantum algebras, in Representations and Quantizations (Shanghai, 1998), China High. Educ. Press, Beijing, 2000, 89-144.
  8. Ding J.T., Frenkel I.B., Isomorphism of two realizations of quantum affine algebra $U_q({\mathfrak{gl}}(n))$, Comm. Math. Phys. 156 (1993), 277-300.
  9. Drinfeld V.G., Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl. 32 (1985), 254-258.
  10. Drinfeld V.G., A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. 36 (1988), 212-216.
  11. Frenkel E., Mukhin E., The Hopf algebra ${\rm Rep}\,U_q\widehat{{\mathfrak{gl}}}_\infty$, Selecta Math. (N.S.) 8 (2002), 537-635, arXiv:math.AG/0103126.
  12. Frenkel I.B., Reshetikhin N.Yu., Quantum affine algebras and holonomic difference equations, Comm. Math. Phys. 146 (1992), 1-60.
  13. Gel'fand I.M., Retakh V.S., Determinants of matrices over noncommutative rings, Funct. Anal. Appl. 25 (1991), 91-102.
  14. Gel'fand I.M., Retakh V.S., A theory of noncommutative determinants and characteristic functions of graphs, Funct. Anal. Appl. 26 (1992), 231-246.
  15. Gow L., Molev A., Representations of twisted $q$-Yangians, Selecta Math. (N.S.) 16 (2010), 439-499, arXiv:0909.4905.
  16. Guay N., Regelskis V., Wendlandt C., Equivalences between three presentations of orthogonal and symplectic Yangians, Lett. Math. Phys. 109 (2019), 327-379, arXiv:1706.05176.
  17. Jimbo M., A $q$-difference analogue of $U({\mathfrak{g}})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69.
  18. Jimbo M., Quantum $R$-matrix for the generalized Toda system, Comm. Math. Phys. 102 (1986), 537-547.
  19. Jing N., Liu M., Molev A., Isomorphism between the $R$-matrix and Drinfeld presentations of Yangian in types $B$, $C$ and $D$, Comm. Math. Phys. 361 (2018), 827-872, arXiv:1705.08155.
  20. Jing N., Liu M., Molev A., Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: Type $C$, J. Math. Phys. 61 (2020), 031701, 41 pages, arXiv:1903.00204.
  21. Khoroshkin S.M., Tolstoy V.N., Universal $R$-matrix for quantized (super)algebras, Comm. Math. Phys. 141 (1991), 599-617.
  22. Levendorskiǐ S.Z., On generators and defining relations of Yangians, J. Geom. Phys. 12 (1993), 1-11.
  23. Reshetikhin N.Y., Semenov-Tian-Shansky M.A., Central extensions of quantum current groups, Lett. Math. Phys. 19 (1990), 133-142.
  24. Tarasov V.O., Irreducible monodromy matrices for the $R$-matrix of the $XXZ$-model and local lattice quantum Hamiltonians, Theoret. and Math. Phys. 63 (1985), 440-454.
  25. Wendlandt C., The $R$-matrix presentation for the Yangian of a simple Lie algebra, Comm. Math. Phys. 363 (2018), 289-332, arXiv:1709.08162.

Previous article  Next article  Contents of Volume 16 (2020)