|
SIGMA 16 (2020), 038, 52 pages arXiv:1907.13545
https://doi.org/10.3842/SIGMA.2020.038
Contribution to the Special Issue on Integrability, Geometry, Moduli in honor of Motohico Mulase for his 65th birthday
Quantum Statistical Mechanics of the Absolute Galois Group
Yuri I. Manin a and Matilde Marcolli bcd
a) Max Planck Institute for Mathematics, Bonn, Germany
b) California Institute of Technology, Pasadena, USA
c) University of Toronto, Toronto, Canada
d) Perimeter Institute for Theoretical Physics, Waterloo, Canada
Received August 01, 2019, in final form April 15, 2020; Published online May 05, 2020
Abstract
We present possible extensions of the quantum statistical mechanical formulation of class field theory to the non-abelian case, based on the action of the absolute Galois group on Grothendieck's dessins d'enfant, the embedding in the Grothendieck-Teichmüller group, and the Drinfeld-Ihara involution.
Key words: quantum statistical mechanics; dessins d'enfant; absolute Galois group; Drinfeld-Ihara involution; quasi-triangular quasi-Hopf algebras.
pdf (801 kb)
tex (137 kb)
References
- Adrianov N., Zvonkin A., Composition of plane trees, Acta Appl. Math. 52 (1998), 239-245.
- Aluffi P., Marcolli M., Algebro-geometric Feynman rules, Int. J. Geom. Methods Mod. Phys. 8 (2011), 203-237, arXiv:0811.2514.
- Aluffi P., Marcolli M., Feynman motives and deletion-contraction relations, in Topology of Algebraic Varieties and Singularities, Contemp. Math., Vol. 538, Amer. Math. Soc., Providence, RI, 2011, 21-64, arXiv:0907.3225.
- Ambjørn J., Chekhov L., The matrix model for dessins d'enfants, Ann. Inst. Henri Poincaré D 1 (2014), 337-361, arXiv:1404.4240.
- Anderson J., Bouw I.I., Ejder O., Girgin N., Karemaker V., Manes M., Dynamical Belyi maps, in Women in Numbers Europe II, Assoc. Women Math. Ser., Vol. 11, Springer, Cham, 2018, 57-82, arXiv:1703.08563.
- Belyǐ G.V., Galois extensions of a maximal cyclotomic field, Math. USSR Izv. 14 (1979), 247-256.
- Biswas K., Perez-Marco R., Log-Riemann surfaces, Caratheodory convergence and Euler's formula, in Geometry, Groups and Dynamics, Contemp. Math., Vol. 639, Amer. Math. Soc., Providence, RI, 2015, 197-203, arXiv:1512.03776.
- Boavida de Brito P., Horel G., Robertson M., Operads of genus zero curves and the Grothendieck-Teichmüller group, Geom. Topol. 23 (2019), 299-346, arXiv:1703.05143.
- Bollobás B., Riordan O., A polynomial invariant of graphs on orientable surfaces, Proc. London Math. Soc. 83 (2001), 513-531.
- Borisov D.V., Manin Yu.I., Generalized operads and their inner cohomomorphisms, in Geometry and Dynamics of Groups and Spaces, Progr. Math., Vol. 265, Birkhäuser, Basel, 2008, 247-308, arXiv:math.CT/0609748.
- Bost J.-B., Connes A., Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta Math. (N.S.) 1 (1995), 411-457.
- Chekhov L., Makeenko Yu., The multicritical Kontsevich-Penner model, Modern Phys. Lett. A 7 (1992), 1223-1236, arXiv:hep-th/9201033.
- Chu C., Guo L., Localization of Rota-Baxter algebras, J. Pure Appl. Algebra 218 (2014), 237-251, arXiv:1210.1799.
- Cohen P.B., Itzykson C., Wolfart J., Fuchsian triangle groups and Grothendieck dessins. Variations on a theme of Belyǐ, Comm. Math. Phys. 163 (1994), 605-627.
- Combe N.C., Manin Yu.I., Genus zero modular operad and its involution in the Grothendieck-Teichmüller group, arXiv:1907.10313.
- Combe N.C., Manin Yu.I., Symmetries of the genus zero modular operad, arXiv:1907.10317.
- Connes A., Consani C., Marcolli M., Noncommutative geometry and motives: the thermodynamics of endomotives, Adv. Math. 214 (2007), 761-831, arXiv:math.QA/0512138.
- Connes A., Consani C., Marcolli M., Fun with ${\mathbb F}_1$, J. Number Theory 129 (2009), 1532-1561, arXiv:0806.2401.
- Connes A., Kreimer D., Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys. 210 (2000), 249-273, arXiv:hep-th/9912092.
- Connes A., Marcolli M., From physics to number theory via noncommutative geometry, in Frontiers in Number Theory, Physics, and Geometry. I. On Random Matrices, Zeta Functions, and Dynamical Systems, Springer, Berlin, 2006, 269-347, arXiv:math.NT/0404128.
- Connes A., Marcolli M., Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, Vol. 55, Amer. Math. Soc., Providence, RI, 2008.
- Connes A., Marcolli M., Ramachandran N., KMS states and complex multiplication, Selecta Math. (N.S.) 11 (2005), 325-347, arXiv:math.QA/0501424.
- Cordwell K., Gilbertson S., Nuechterlein N., Pilgrim K.M., Pinella S., On the classification of critically fixed rational maps, Conform. Geom. Dyn. 19 (2015), 51-94, arXiv:1308.5895.
- Cornelissen G., de Smit B., Li X., Marcolli M., Smit H., Characterization of global fields by Dirichlet $L$-series, Res. Number Theory 5 (2019), 7, 15 pages, arXiv:1706.04515.
- Cornelissen G., Li X., Marcolli M., Smit H., Reconstructing global fields from dynamics in the abelianized Galois group, Selecta Math. (N.S.) 25 (2019), 24, 18 pages, arXiv:1706.04517.
- Dasbach O.T., Futer D., Kalfagianni E., Lin X.-S., Stoltzfus N.W., The Jones polynomial and graphs on surfaces, J. Combin. Theory Ser. B 98 (2008), 384-399, arXiv:math.GT/0605571.
- Dijkgraaf R., Pasquier V., Roche P., Quasi-quantum groups related to orbifold models, in Modern Quantum Field Theory (Bombay, 1990), World Sci. Publ., River Edge, NJ, 1991, 375-383.
- Doran C.F., Gannon T., Movasati H., Shokri K.M., Automorphic forms for triangle groups, Commun. Number Theory Phys. 7 (2013), 689-737, arXiv:1307.4372.
- Drinfel'd V.G., Quantum groups, in Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 798-820.
- Drinfel'd V.G., Quasi-Hopf algebras, Leningrad Math. J. 1 (1990), 1419-1457.
- Drinfel'd V.G., On quasitriangular quasi-Hopf algebras and on a group that is closely connected with ${\rm Gal}(\overline{\bf Q}/{\bf Q})$, Leningrad Math. J. 2 (1991), 829-869.
- Fresse B., Homotopy of operads and Grothendieck-Teichmüller groups. Part 1. The algebraic theory and its topological background, Mathematical Surveys and Monographs, Vol. 217, Amer. Math. Soc., Providence, RI, 2017.
- Grothendieck A., Esquisse d'un programme, in Geometric Galois Actions, 1, London Math. Soc. Lecture Note Ser., Vol. 242, Cambridge University Press, Cambridge, 1997, 5-48.
- Guo L., Baxter algebras and the umbral calculus, Adv. in Appl. Math. 27 (2001), 405-426, arXiv:math.RT/0407159.
- Guo L., An introduction to Rota-Baxter algebra, Surveys of Modern Mathematics, Vol. 4, International Press, Somerville, MA, 2012.
- Ha E., Paugam F., Bost-Connes-Marcolli systems for Shimura varieties. I. Definitions and formal analytic properties, Int. Math. Res. Pap. 2005 (2005), 237-286, arXiv:math.QA/0507101.
- Habiro K., Cyclotomic completions of polynomial rings, Publ. Res. Inst. Math. Sci. 40 (2004), 1127-1146.
- Hahn M.A., Kramer R., Lewanski D., Wall-crossing formulae and strong piecewise polynomiality for mixed Grothendieck dessins d'enfant, monotone, and double simple Hurwitz numbers, Adv. Math. 336 (2018), 38-69, arXiv:1710.01047.
- Huang H.-L., Liu G., Ye Y., The braided monoidal structures on a class of linear Gr-categories, Algebr. Represent. Theory 17 (2014), 1249-1265, arXiv:1206.5402.
- Ihara Y., Braids, Galois groups, and some arithmetic functions, in Proceedings of the International Congress of Mathematicians, Vols. I, II (Kyoto, 1990), Math. Soc. Japan, Tokyo, 1991, 99-120.
- Ihara Y., On the embedding of ${\rm Gal}(\overline{\bf Q}/{\bf Q})$ into $\widehat{\rm GT}$, in The Grothendieck Theory of Dessins D'enfants (Luminy, 1993), London Math. Soc. Lecture Note Ser., Vol. 200, Cambridge University Press, Cambridge, 1994, 289-321.
- Kapranov M., Smirnov A., Cohomology determinants and reciprocity laws: number field case, unpublished manuscript.
- Kazarian M., Zograf P., Virasoro constraints and topological recursion for Grothendieck's dessin counting, Lett. Math. Phys. 105 (2015), 1057-1084, arXiv:1406.5976.
- Kong L., Zheng H., The center functor is fully faithful, Adv. Math. 339 (2018), 749-779, arXiv:1507.00503.
- Kontsevich M., Manin Yu., Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), 525-562, arXiv:hep-th/9402147.
- Laca M., Larsen N.S., Neshveyev S., On Bost-Connes types systems for number fields, J. Number Theory 129 (2009), 325-338, arXiv:0710.3452.
- Lando S.K., Zvonkin A.K., Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, Vol. 141, Springer-Verlag, Berlin, 2004.
- Lieber J.F., Manin Yu.I., Marcolli M., Bost-Connes systems and ${\mathbb F}_1$-structures in Grothendieck rings, spectra, and Nori motives, arXiv:1901.00020.
- Majid S., Tannaka-Kreǐn theorem for quasi-Hopf algebras and other results, in Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990), Contemp. Math., Vol. 134, Amer. Math. Soc., Providence, RI, 1992, 219-232.
- Majid S., Quantum double for quasi-Hopf algebras, Lett. Math. Phys. 45 (1998), 1-9, arXiv:q-alg/9701002.
- Malle G., Matzat B.H., Inverse Galois theory, 2nd ed., Springer Monographs in Mathematics, Springer, Berlin, 2018.
- Malyshev D., Hopf algebra of ribbon graphs and renormalization, J. High Energy Phys. 2002 (2002), no. 5, 013, 28 pages, arXiv:hep-th/0112146.
- Manin Yu.I., Cyclotomy and analytic geometry over ${\mathbb F}_1$, in Quanta of Maths, Clay Math. Proc., Vol. 11, Amer. Math. Soc., Providence, RI, 2010, 385-408, arXiv:0809.1564.
- Manin Yu.I., Marcolli M.I., Homotopy types and geometries below ${Spec}({\mathbb Z})$, in Dynamics: Topology and Numbers, Contemp. Math., Vol. 744, Amer. Math. Soc., Providence, RI, 2020, 27-56, arXiv:1806.10801.
- Marcolli M., Cyclotomy and endomotives, p-Adic Numbers Ultrametric Anal. Appl. 1 (2009), 217-263, arXiv:0901.3167.
- Marcolli M., Tedeschi N., Entropy algebras and Birkhoff factorization, J. Geom. Phys. 97 (2015), 243-265, arXiv:1412.0247.
- Marcolli M., Xu Y., Quantum statistical mechanics in arithmetic topology, J. Geom. Phys. 114 (2017), 153-183, arXiv:1602.04890.
- Marcolli M., Zolman N., Adinkras, dessins, origami, and supersymmetry spectral triples, p-Adic Numbers Ultrametric Anal. Appl. 11 (2019), 223-247, arXiv:1606.04463.
- Martin P., Enumérations eulériennes dans le multigraphs et invariants de Tutte-Gröthendieck, Ph.D. Thesis, Grenoble, 1977.
- Stankewitz R., Density of repelling fixed points in the Julia set of a rational or entire semigroup, J. Difference Equ. Appl. 16 (2010), 763-771.
- Wood M.M., Belyi-extending maps and the Galois action on dessins d'enfants, Publ. Res. Inst. Math. Sci. 42 (2006), 721-737, arXiv:math.NT/0304489.
- Yalkinoglu B., On Bost-Connes type systems and complex multiplication, J. Noncommut. Geom. 6 (2012), 275-319, arXiv:1010.0879.
- Yalkinoglu B., On arithmetic models and functoriality of Bost-Connes systems (with an appendix by Sergey Neshveyev), Invent. Math. 191 (2013), 383-425, arXiv:1105.5022.
- Yoshida M., Fuchsian differential equations. With special emphasis on the Gauss-Schwarz theory, Aspects of Mathematics, Vol. E11, Friedr. Vieweg & Sohn, Braunschweig, 1987.
- Zograf P., Enumeration of Grothendieck's dessins and KP hierarchy, Int. Math. Res. Not. 2015 (2015), 13533-13544, arXiv:1312.2538.
|
|