Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 037, 35 pages      arXiv:1806.10007      https://doi.org/10.3842/SIGMA.2020.037

An Infinite-Dimensional $\square_q$-Module Obtained from the $q$-Shuffle Algebra for Affine $\mathfrak{sl}_2$

Sarah Post a and Paul Terwilliger b
a)  Department of Mathematics, University of Hawai`i at Manoa, Honolulu, HI 96822, USA
b)  Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA

Received August 18, 2019, in final form April 19, 2020; Published online May 04, 2020

Abstract
Let $\mathbb F$ denote a field, and pick a nonzero $q \in \mathbb F$ that is not a root of unity. Let $\mathbb Z_4=\mathbb Z/4 \mathbb Z$ denote the cyclic group of order 4. Define a unital associative ${\mathbb F}$-algebra $\square_q$ by generators $\lbrace x_i \rbrace_{i \in \mathbb Z_4}$ and relations $$\frac{q x_i x_{i+1}-q^{-1}x_{i+1}x_i}{q-q^{-1}} = 1,\qquad x^3_i x_{i+2} - \lbrack 3 \rbrack_q x^2_i x_{i+2} x_i + \lbrack 3 \rbrack_q x_i x_{i+2} x^2_i -x_{i+2} x^3_i = 0,$$ where $\lbrack 3 \rbrack_q = \big(q^3-q^{-3}\big)/\big(q-q^{-1}\big)$. Let $V$ denote a $\square_q$-module. A vector $\xi\in V$ is called NIL whenever $x_1 \xi = 0 $ and $x_3 \xi=0$ and $\xi \not=0$. The $\square_q$-module $V$ is called NIL whenever $V$ is generated by a NIL vector. We show that up to isomorphism there exists a unique NIL $\square_q$-module, and it is irreducible and infinite-dimensional. We describe this module from sixteen points of view. In this description an important role is played by the $q$-shuffle algebra for affine $\mathfrak{sl}_2$.

Key words: quantum group; $q$-Serre relations; derivation; $q$-Onsager algebra.

pdf (608 kb)   tex (36 kb)  

References

  1. Baseilhac P., Deformed Dolan-Grady relations in quantum integrable models, Nuclear Phys. B 709 (2005), 491-521, arXiv:hep-th/0404149.
  2. Baseilhac P., An integrable structure related with tridiagonal algebras, Nuclear Phys. B 705 (2005), 605-619, arXiv:math-ph/0408025.
  3. Baseilhac P., A family of tridiagonal pairs and related symmetric functions, J. Phys. A: Math. Gen. 39 (2006), 11773-11791, arXiv:math-ph/0604035.
  4. Baseilhac P., The $q$-deformed analogue of the Onsager algebra: beyond the Bethe ansatz approach, Nuclear Phys. B 754 (2006), 309-328, arXiv:math-ph/0604036.
  5. Baseilhac P., Belliard S., Generalized $q$-Onsager algebras and boundary affine Toda field theories, Lett. Math. Phys. 93 (2010), 213-228, arXiv:0906.1215.
  6. Baseilhac P., Belliard S., The half-infinite XXZ chain in Onsager's approach, Nuclear Phys. B 873 (2013), 550-584, arXiv:1211.6304.
  7. Baseilhac P., Koizumi K., A deformed analogue of Onsager's symmetry in the $XXZ$ open spin chain, J. Stat. Mech. Theory Exp. 2005 (2005), P10005, 15 pages, arXiv:hep-th/0507053.
  8. Baseilhac P., Koizumi K., A new (in)finite-dimensional algebra for quantum integrable models, Nuclear Phys. B 720 (2005), 325-347, arXiv:math-ph/0503036.
  9. Baseilhac P., Koizumi K., Exact spectrum of the $XXZ$ open spin chain from the $q$-Onsager algebra representation theory, J. Stat. Mech. Theory Exp. 2007 (2007), P09006, 27 pages, arXiv:hep-th/0703106.
  10. Baseilhac P., Kolb S., Braid group action and root vectors for the $q$-Onsager algebra, Transform. Groups, to appear, arXiv:1706.08747.
  11. Baseilhac P., Shigechi K., A new current algebra and the reflection equation, Lett. Math. Phys. 92 (2010), 47-65, arXiv:0906.1482.
  12. Baseilhac P., Vu T.T., Analogues of Lusztig's higher order relations for the $q$-Onsager algebra, J. Math. Phys. 55 (2014), 081707, 21 pages, arXiv:1312.3433.
  13. Green J.A., Shuffle algebras, Lie algebras and quantum groups, Textos de Matemática, Série B, Vol. 9, Universidade de Coimbra, Departamento de Matemática, Coimbra, 1995.
  14. Hong J., Kang S.-J., Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, Vol. 42, Amer. Math. Soc., Providence, RI, 2002.
  15. Ito T., Tanabe K., Terwilliger P., Some algebra related to $P$- and $Q$-polynomial association schemes, in Codes and Association Schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Vol. 56, Amer. Math. Soc., Providence, RI, 2001, 167-192, arXiv:math.CO/0406556.
  16. Ito T., Terwilliger P., Tridiagonal pairs of $q$-Racah type, J. Algebra 322 (2009), 68-93, arXiv:0807.3990.
  17. Ito T., Terwilliger P., The augmented tridiagonal algebra, Kyushu J. Math. 64 (2010), 81-144, arXiv:0904.2889.
  18. Kashiwara M., On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465-516.
  19. Leclerc B., Dual canonical bases, quantum shuffles and $q$-characters, Math. Z. 246 (2004), 691-732, arXiv:math.QA/0209133.
  20. Lusztig G., Introduction to quantum groups, Progress in Mathematics, Vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993.
  21. Rosso M., Groupes quantiques et algèbres de battage quantiques, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 145-148.
  22. Rosso M., Quantum groups and quantum shuffles, Invent. Math. 133 (1998), 399-416.
  23. Rotman J.J., Advanced modern algebra, 2nd ed., Graduate Studies in Mathematics, Vol. 114, Amer. Math. Soc., Providence, RI, 2010.
  24. Terwilliger P., The subconstituent algebra of an association scheme. III, J. Algebraic Combin. 2 (1993), 177-210.
  25. Terwilliger P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), 149-203, arXiv:math.RA/0406555.
  26. Terwilliger P., Two relations that generalize the $q$-Serre relations and the Dolan-Grady relations, in Physics and Combinatorics 1999 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, 377-398, arXiv:math.QA/0307016.
  27. Terwilliger P., An algebraic approach to the Askey scheme of orthogonal polynomials, in Orthogonal Polynomials and Special Functions, Lecture Notes in Math., Vol. 1883, Springer, Berlin, 2006, 255-330, arXiv:math.QA/0408390.
  28. Terwilliger P., The universal Askey-Wilson algebra, SIGMA 7 (2011), 069, 24 pages, arXiv:1104.2813.
  29. Terwilliger P., The $q$-Onsager algebra and the positive part of $U_q\big(\widehat{\mathfrak{sl}}_2\big)$, Linear Algebra Appl. 521 (2017), 19-56, arXiv:1506.08666.
  30. Terwilliger P., The Lusztig automorphism of the $q$-Onsager algebra, J. Algebra 506 (2018), 56-75, arXiv:1706.05546.
  31. Terwilliger P., The $q$-Onsager algebra and the universal Askey-Wilson algebra, SIGMA 14 (2018), 044, 18 pages, arXiv:1801.06083.
  32. Terwilliger P., Vidunas R., Leonard pairs and the Askey-Wilson relations, J. Algebra Appl. 3 (2004), 411-426, arXiv:math.QA/0305356.
  33. Yang Y., Finite-dimensional irreducible $\square_q$-modules and their Drinfel'd polynomials, Linear Algebra Appl. 537 (2018), 160-190, arXiv:1706.00518.
  34. Yang Y., Some $q$-exponential formulas for finite-dimensional $\square_q$-modules, Algebr. Represent. Theory, to appear, arXiv:1612.02864.

Previous article  Next article  Contents of Volume 16 (2020)