|
SIGMA 16 (2020), 037, 35 pages arXiv:1806.10007
https://doi.org/10.3842/SIGMA.2020.037
An Infinite-Dimensional $\square_q$-Module Obtained from the $q$-Shuffle Algebra for Affine $\mathfrak{sl}_2$
Sarah Post a and Paul Terwilliger b
a) Department of Mathematics, University of Hawai`i at Manoa, Honolulu, HI 96822, USA
b) Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA
Received August 18, 2019, in final form April 19, 2020; Published online May 04, 2020
Abstract
Let $\mathbb F$ denote a field, and pick a nonzero $q \in \mathbb F$ that is not a root of unity. Let $\mathbb Z_4=\mathbb Z/4 \mathbb Z$ denote the cyclic group of order 4. Define a unital associative ${\mathbb F}$-algebra $\square_q$ by generators $\lbrace x_i \rbrace_{i \in \mathbb Z_4}$ and relations
$$\frac{q x_i x_{i+1}-q^{-1}x_{i+1}x_i}{q-q^{-1}} = 1,\qquad x^3_i x_{i+2} - \lbrack 3 \rbrack_q x^2_i x_{i+2} x_i + \lbrack 3 \rbrack_q x_i x_{i+2} x^2_i -x_{i+2} x^3_i = 0,$$
where $\lbrack 3 \rbrack_q = \big(q^3-q^{-3}\big)/\big(q-q^{-1}\big)$. Let $V$ denote a $\square_q$-module. A vector $\xi\in V$ is called NIL whenever $x_1 \xi = 0 $ and $x_3 \xi=0$ and $\xi \not=0$. The $\square_q$-module $V$ is called NIL whenever $V$ is generated by a NIL vector. We show that up to isomorphism there exists a unique NIL $\square_q$-module, and it is irreducible and infinite-dimensional. We describe this module from sixteen points of view. In this description an important role is played by the $q$-shuffle algebra for affine $\mathfrak{sl}_2$.
Key words: quantum group; $q$-Serre relations; derivation; $q$-Onsager algebra.
pdf (608 kb)
tex (36 kb)
References
- Baseilhac P., Deformed Dolan-Grady relations in quantum integrable models, Nuclear Phys. B 709 (2005), 491-521, arXiv:hep-th/0404149.
- Baseilhac P., An integrable structure related with tridiagonal algebras, Nuclear Phys. B 705 (2005), 605-619, arXiv:math-ph/0408025.
- Baseilhac P., A family of tridiagonal pairs and related symmetric functions, J. Phys. A: Math. Gen. 39 (2006), 11773-11791, arXiv:math-ph/0604035.
- Baseilhac P., The $q$-deformed analogue of the Onsager algebra: beyond the Bethe ansatz approach, Nuclear Phys. B 754 (2006), 309-328, arXiv:math-ph/0604036.
- Baseilhac P., Belliard S., Generalized $q$-Onsager algebras and boundary affine Toda field theories, Lett. Math. Phys. 93 (2010), 213-228, arXiv:0906.1215.
- Baseilhac P., Belliard S., The half-infinite XXZ chain in Onsager's approach, Nuclear Phys. B 873 (2013), 550-584, arXiv:1211.6304.
- Baseilhac P., Koizumi K., A deformed analogue of Onsager's symmetry in the $XXZ$ open spin chain, J. Stat. Mech. Theory Exp. 2005 (2005), P10005, 15 pages, arXiv:hep-th/0507053.
- Baseilhac P., Koizumi K., A new (in)finite-dimensional algebra for quantum integrable models, Nuclear Phys. B 720 (2005), 325-347, arXiv:math-ph/0503036.
- Baseilhac P., Koizumi K., Exact spectrum of the $XXZ$ open spin chain from the $q$-Onsager algebra representation theory, J. Stat. Mech. Theory Exp. 2007 (2007), P09006, 27 pages, arXiv:hep-th/0703106.
- Baseilhac P., Kolb S., Braid group action and root vectors for the $q$-Onsager algebra, Transform. Groups, to appear, arXiv:1706.08747.
- Baseilhac P., Shigechi K., A new current algebra and the reflection equation, Lett. Math. Phys. 92 (2010), 47-65, arXiv:0906.1482.
- Baseilhac P., Vu T.T., Analogues of Lusztig's higher order relations for the $q$-Onsager algebra, J. Math. Phys. 55 (2014), 081707, 21 pages, arXiv:1312.3433.
- Green J.A., Shuffle algebras, Lie algebras and quantum groups, Textos de Matemática, Série B, Vol. 9, Universidade de Coimbra, Departamento de Matemática, Coimbra, 1995.
- Hong J., Kang S.-J., Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, Vol. 42, Amer. Math. Soc., Providence, RI, 2002.
- Ito T., Tanabe K., Terwilliger P., Some algebra related to $P$- and $Q$-polynomial association schemes, in Codes and Association Schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Vol. 56, Amer. Math. Soc., Providence, RI, 2001, 167-192, arXiv:math.CO/0406556.
- Ito T., Terwilliger P., Tridiagonal pairs of $q$-Racah type, J. Algebra 322 (2009), 68-93, arXiv:0807.3990.
- Ito T., Terwilliger P., The augmented tridiagonal algebra, Kyushu J. Math. 64 (2010), 81-144, arXiv:0904.2889.
- Kashiwara M., On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465-516.
- Leclerc B., Dual canonical bases, quantum shuffles and $q$-characters, Math. Z. 246 (2004), 691-732, arXiv:math.QA/0209133.
- Lusztig G., Introduction to quantum groups, Progress in Mathematics, Vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993.
- Rosso M., Groupes quantiques et algèbres de battage quantiques, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 145-148.
- Rosso M., Quantum groups and quantum shuffles, Invent. Math. 133 (1998), 399-416.
- Rotman J.J., Advanced modern algebra, 2nd ed., Graduate Studies in Mathematics, Vol. 114, Amer. Math. Soc., Providence, RI, 2010.
- Terwilliger P., The subconstituent algebra of an association scheme. III, J. Algebraic Combin. 2 (1993), 177-210.
- Terwilliger P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), 149-203, arXiv:math.RA/0406555.
- Terwilliger P., Two relations that generalize the $q$-Serre relations and the Dolan-Grady relations, in Physics and Combinatorics 1999 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, 377-398, arXiv:math.QA/0307016.
- Terwilliger P., An algebraic approach to the Askey scheme of orthogonal polynomials, in Orthogonal Polynomials and Special Functions, Lecture Notes in Math., Vol. 1883, Springer, Berlin, 2006, 255-330, arXiv:math.QA/0408390.
- Terwilliger P., The universal Askey-Wilson algebra, SIGMA 7 (2011), 069, 24 pages, arXiv:1104.2813.
- Terwilliger P., The $q$-Onsager algebra and the positive part of $U_q\big(\widehat{\mathfrak{sl}}_2\big)$, Linear Algebra Appl. 521 (2017), 19-56, arXiv:1506.08666.
- Terwilliger P., The Lusztig automorphism of the $q$-Onsager algebra, J. Algebra 506 (2018), 56-75, arXiv:1706.05546.
- Terwilliger P., The $q$-Onsager algebra and the universal Askey-Wilson algebra, SIGMA 14 (2018), 044, 18 pages, arXiv:1801.06083.
- Terwilliger P., Vidunas R., Leonard pairs and the Askey-Wilson relations, J. Algebra Appl. 3 (2004), 411-426, arXiv:math.QA/0305356.
- Yang Y., Finite-dimensional irreducible $\square_q$-modules and their Drinfel'd polynomials, Linear Algebra Appl. 537 (2018), 160-190, arXiv:1706.00518.
- Yang Y., Some $q$-exponential formulas for finite-dimensional $\square_q$-modules, Algebr. Represent. Theory, to appear, arXiv:1612.02864.
|
|