|
SIGMA 16 (2020), 032, 111 pages arXiv:1906.00801
https://doi.org/10.3842/SIGMA.2020.032
Contribution to the Special Issue on Integrability, Geometry, Moduli in honor of Motohico Mulase for his 65th birthday
Global Mirrors and Discrepant Transformations for Toric Deligne-Mumford Stacks
Hiroshi Iritani
Department of Mathematics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
Received June 13, 2019, in final form March 29, 2020; Published online April 22, 2020
Abstract
We introduce a global Landau-Ginzburg model which is mirror to several toric Deligne-Mumford stacks and describe the change of the Gromov-Witten theories under discrepant transformations.
We prove a formal decomposition of the quantum cohomology D-modules (and of the all-genus Gromov-Witten potentials) under a discrepant toric wall-crossing. In the case of weighted
blowups of weak-Fano compact toric stacks along toric centres, we show that an analytic lift of the formal decomposition corresponds, via the $\widehat{\Gamma}$-integral structure,
to an Orlov-type semiorthogonal decomposition of topological $K$-groups. We state a conjectural functoriality of Gromov-Witten theories under discrepant transformations in terms
of a Riemann-Hilbert problem.
Key words: quantum cohomology; mirror symmetry; toric variety; Landau-Ginzburg model; Gamma-integral structure.
pdf (1724 kb)
tex (339 kb)
References
- Abramovich D., Graber T., Vistoli A., Algebraic orbifold quantum products, in Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math., Vol. 310, Amer. Math. Soc., Providence, RI, 2002, 1-24, arXiv:math.AG/0112004.
- Abramovich D., Graber T., Vistoli A., Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), 1337-1398, arXiv:math.AG/0603151.
- Acosta P., Asymptotic expansion and the LG/(Fano, general type) correspondence, arXiv:1411.4162.
- Acosta P., Shoemaker M., Quantum cohomology of toric blowups and Landau-Ginzburg correspondences, Algebr. Geom. 5 (2018), 239-263, arXiv:1504.04396.
- Acosta P., Shoemaker M., Gromov-Witten theory of toric birational transformations, Int. Math. Res. Not., to appear, arXiv:1604.03491.
- Adolphson A., Hypergeometric functions and rings generated by monomials, Duke Math. J. 73 (1994), 269-290.
- Arnol'd V.I., Guseǐn-Zade S.M., Varchenko A.N., Singularities of differentiable maps, Vol. II, Monodromy and asymptotics of integrals, Monographs in Mathematics, Vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1988.
- Ballard M., Diemer C., Favero D., Katzarkov L., Kerr G., The Mori program and non-Fano toric homological mirror symmetry, Trans. Amer. Math. Soc. 367 (2015), 8933-8974, arXiv:1302.0803.
- Ballard M., Favero D., Katzarkov L., Variation of geometric invariant theory quotients and derived categories, J. Reine Angew. Math. 746 (2019), 235-303, arXiv:1203.6643.
- Balser W., Jurkat W.B., Lutz D.A., Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations, J. Math. Anal. Appl. 71 (1979), 48-94.
- Barannikov S., Semi-infinite Hodge structure and mirror symmetry for projective spaces, arXiv:math.AG/0010157.
- Bayer A., Semisimple quantum cohomology and blowups, Int. Math. Res. Not. 2004 (2004), 2069-2083, arXiv:math.AG/0403260.
- Bondal A., Orlov D., Semiorthogonal decomposition for algebraic varieties, arXiv:alg-geom/9506012.
- Borisov L.A., Chen L., Smith G.G., The orbifold Chow ring of toric Deligne-Mumford stacks, J. Amer. Math. Soc. 18 (2005), 193-215, arXiv:math.AG/0309229.
- Borisov L.A., Horja R.P., Mellin-Barnes integrals as Fourier-Mukai transforms, Adv. Math. 207 (2006), 876-927, arXiv:math.AG/0510486.
- Borisov L.A., Horja R.P., On the $K$-theory of smooth toric DM stacks, in Snowbird Lectures on String Geometry, Contemp. Math., Vol. 401, Amer. Math. Soc., Providence, RI, 2006, 21-42, arXiv:math.AG/0503277.
- Borisov L.A., Horja R.P., On the better behaved version of the GKZ hypergeometric system, Math. Ann. 357 (2013), 585-603, arXiv:1011.5720.
- Bridgeland T., Toledano Laredo V., Stokes factors and multilogarithms, J. Reine Angew. Math. 682 (2013), 89-128, arXiv:1006.4623.
- Brini A., Cavalieri R., Ross D., Crepant resolutions and open strings, J. Reine Angew. Math. 755 (2019), 191-245, arXiv:1309.4438.
- Bryan J., Graber T., The crepant resolution conjecture, in Algebraic Geometry - Seattle 2005, Part 1, Proc. Sympos. Pure Math., Vol. 80, Amer. Math. Soc., Providence, RI, 2009, 23-42, arXiv:math.AG/0610129.
- Cadman C., Using stacks to impose tangency conditions on curves, Amer. J. Math. 129 (2007), 405-427, arXiv:math.AG/0312349.
- Charest F., Woodward C.T., Floer cohomology and flips, arXiv:1508.01573.
- Chen W., Ruan Y., Orbifold Gromov-Witten theory, in Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math., Vol. 310, Amer. Math. Soc., Providence, RI, 2002, 25-85, arXiv:math.AG/0103156.
- Chen W., Ruan Y., A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), 1-31, arXiv:math.AG/0004129.
- Clingempeel J., Le Floch B., Romo M., Brane transport in anomalous (2,2) models and localization, arXiv:1811.12385.
- Coates T., Corti A., Iritani H., Tseng H.-H., A mirror theorem for toric stacks, Compos. Math. 151 (2015), 1878-1912, arXiv:1310.4163.
- Coates T., Corti A., Iritani H., Tseng H.-H., Hodge-theoretic mirror symmetry for toric stacks, J. Differential Geom. 114 (2020), 41-115, arXiv:1606.07254.
- Coates T., Givental A., Quantum Riemann-Roch, Lefschetz and Serre, Ann. of Math. 165 (2007), 15-53, arXiv:math.AG/0110142.
- Coates T., Iritani H., On the convergence of Gromov-Witten potentials and Givental's formula, Michigan Math. J. 64 (2015), 587-631, arXiv:1203.4193.
- Coates T., Iritani H., A Fock sheaf for Givental quantization, Kyoto J. Math. 58 (2018), 695-864, arXiv:1411.7039.
- Coates T., Iritani H., Jiang Y., The crepant transformation conjecture for toric complete intersections, Adv. Math. 329 (2018), 1002-1087, arXiv:1410.0024.
- Coates T., Iritani H., Tseng H.-H., Wall-crossings in toric Gromov-Witten theory. I. Crepant examples, Geom. Topol. 13 (2009), 2675-2744, arXiv:math.AG/0611550.
- Cotti G., Dubrovin B., Guzzetti D., Isomonodromy deformations at an irregular singularity with coalescing eigenvalues, Duke Math. J. 168 (2019), 967-1108, arXiv:1706.04808.
- Cox D.A., Little J.B., Schenck H.K., Toric varieties, Graduate Studies in Mathematics, Vol. 124, Amer. Math. Soc., Providence, RI, 2011.
- Diemer C., Katzarkov L., Kerr G., Compactifications of spaces of Landau-Ginzburg models, Izv. Math. 77 (2013), 487-508, arXiv:1207.0042.
- Diemer C., Katzarkov L., Kerr G., Symplectomorphism group relations and degenerations of Landau-Ginzburg models, J. Eur. Math. Soc. 18 (2016), 2167-2271, arXiv:1204.2233.
- Douai A., Sabbah C., Gauss-Manin systems, Brieskorn lattices and Frobenius structures. I, Ann. Inst. Fourier (Grenoble) 53 (2003), 1055-1116, arXiv:math.AG/0211352.
- Douai A., Sabbah C., Gauss-Manin systems, Brieskorn lattices and Frobenius structures. II, in Frobenius Manifolds, Aspects Math., Vol. E36, Friedr. Vieweg, Wiesbaden, 2004, 1-18, arXiv:math.AG/0211353.
- Dubrovin B., Geometry and analytic theory of Frobenius manifolds, Doc. Math. (1998), extra Vol. II, 315-326, arXiv:math.AG/9807034.
- Dubrovin B., Painlevé transcendents in two-dimensional topological field theory, in The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 287-412, arXiv:math.AG/9803107.
- Fang B., Zhou P., Gamma II for toric varieties from integrals on T-dual branes and homological mirror symmetry, arXiv:1903.05300.
- Fantechi B., Mann E., Nironi F., Smooth toric Deligne-Mumford stacks, J. Reine Angew. Math. 648 (2010), 201-244, arXiv:0708.1254.
- Galkin S., The conifold point, arXiv:1404.7388.
- Galkin S., Golyshev V., Iritani H., Gamma classes and quantum cohomology of Fano manifolds: gamma conjectures, Duke Math. J. 165 (2016), 2005-2077, arXiv:1404.6407.
- Gel'fand I.M., Kapranov M.M., Zelevinsky A.V., Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994.
- Gel'fand I.M., Zelevinskii A.V., Kapranov M.M., Hypergeometric functions and toric varieties, Funct. Anal. Appl. 23 (1989), 94-106.
- Givental A.B., Homological geometry and mirror symmetry, in Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 472-480.
- Givental A.B., Elliptic Gromov-Witten invariants and the generalized mirror conjecture, in Integrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997), World Sci. Publ., River Edge, NJ, 1998, 107-155, arXiv:math.AG/9803053.
- Givental A.B., Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001), 551-568, arXiv:math.AG/0108100.
- Givental A.B., Semisimple Frobenius structures at higher genus, Int. Math. Res. Not. 2001 (2001), 1265-1286, arXiv:math.AG/0008067.
- González E., Woodward C.T., Quantum cohomology and toric minimal model programs, Adv. Math. 353 (2019), 591-646, arXiv:1207.3253.
- Gorchinskiy S., Orlov D., Geometric phantom categories, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 329-349, arXiv:1209.6183.
- Graber T., Pandharipande R., Localization of virtual classes, Invent. Math. 135 (1999), 487-518, arXiv:alg-geom/9708001.
- Gross M., Tropical geometry and mirror symmetry, CBMS Regional Conference Series in Mathematics, Vol. 114, Amer. Math. Soc., Providence, RI, 2011.
- Halpern-Leistner D., The derived category of a GIT quotient, J. Amer. Math. Soc. 28 (2015), 871-912, arXiv:1203.0276.
- Herbst M., Hori K., Page D., Phases of $\mathcal{N}=2$ theories in $1+1$ dimensions with boundary, arXiv:0803.2045.
- Hertling C., Sevenheck C., Nilpotent orbits of a generalization of Hodge structures, J. Reine Angew. Math. 609 (2007), 23-80, arXiv:math.AG/0603564.
- Hori K., Vafa C., Mirror symmetry, arXiv:hep-th/0002222.
- Iritani H., Convergence of quantum cohomology by quantum Lefschetz, J. Reine Angew. Math. 610 (2007), 29-69, arXiv:math.DG/0506236.
- Iritani H., Fourier-Mukai transformation and toric quantum cohomology, Talk at Korean Institute for Advanced Study on June 10, 2008, as part of the Workshop on Gromov-Witten Theory and Related Topics, June 09-13, 2008, http://workshop.kias.re.kr/grw/.
- Iritani H., Quantum $D$-modules and generalized mirror transformations, Topology 47 (2008), 225-276, arXiv:math.DG/0411111.
- Iritani H., An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), 1016-1079, arXiv:0903.1463.
- Iritani H., Wall-crossings in toric Gromov-Witten theory III, Talk at Massachusetts Institute of Technology on June 25, 2009, as part of the Workshop on Mirror Symmetry and Related Topics, June 22-26, 2009, Notes and slides available at https://math.berkeley.edu/~auroux/frg/mit09-notes/.
- Iritani H., Quantum cohomology and periods, Ann. Inst. Fourier (Grenoble) 61 (2011), 2909-2958, arXiv:1101.4512.
- Iritani H., A mirror construction for the big equivariant quantum cohomology of toric manifolds, Math. Ann. 368 (2017), 279-316, arXiv:1503.02919.
- Iwanari I., The category of toric stacks, Compos. Math. 145 (2009), 718-746, arXiv:math.AG/0610548.
- Iwanari I., Logarithmic geometry, minimal free resolutions and toric algebraic stacks, Publ. Res. Inst. Math. Sci. 45 (2009), 1095-1140, arXiv:0707.2568.
- Jiang Y., The orbifold cohomology ring of simplicial toric stack bundles, Illinois J. Math. 52 (2008), 493-514, arXiv:math.AG/0504563.
- Jinzenji M., Coordinate change of Gauss-Manin system and generalized mirror transformation, Internat. J. Modern Phys. A 20 (2005), 2131-2156, arXiv:math.AG/0310212.
- Katzarkov L., Kontsevich M., Pantev T., Hodge theoretic aspects of mirror symmetry, in From Hodge theory to integrability and TQFT $tt^*$-geometry, Proc. Sympos. Pure Math., Vol. 78, Amer. Math. Soc., Providence, RI, 2008, 87-174, arXiv:0806.0107.
- Kawamata Y., Log crepant birational maps and derived categories, J. Math. Sci. Univ. Tokyo 12 (2005), 211-231, arXiv:math.AG/0311139.
- Kawamata Y., Derived categories and birational geometry, in Algebraic Geometry - Seattle 2005, Part 2, Proc. Sympos. Pure Math., Vol. 80, Amer. Math. Soc., Providence, RI, 2009, 655-665, arXiv:0804.3150.
- Kerr G., Weighted blowups and mirror symmetry for toric surfaces, Adv. Math. 219 (2008), 199-250, arXiv:math.AG/0609162.
- Kontsevich M., Birational invariants from quantum cohomology, Talk at Higher School of Economics on May 27, 2019, as part of Homological Mirror Symmetry at HSE, May 27 - June 1, 2019, https://euro-math-soc.eu/event/mon-27-may-19-0000/homological-mirror-symmetry-hse.
- Kouchnirenko A.G., Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31.
- Kuznetsov A., Hochschild homology and semiorthogonal decompositions, arXiv:0904.4330.
- Lee Y.-P., Lin H.-W., Wang C.-L., Flops, motives, and invariance of quantum rings, Ann. of Math. 172 (2010), 243-290, arXiv:math.AG/0608370.
- Lee Y.-P., Lin H.-W., Wang C.-L., Quantum cohomology under birational maps and transitions, in String-Math 2015, Proc. Sympos. Pure Math., Vol. 96, Amer. Math. Soc., Providence, RI, 2017, 149-168, arXiv:1705.04799.
- Lee Y.-P., Lin H.-W., Wang C.-L., Quantum flips I: local model, arXiv:1912.03012.
- Li A.-M., Ruan Y., Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math. 145 (2001), 151-218, arXiv:math.AG/9803036.
- Mann E., Reichelt T., Logarithmic degenerations of Landau-Ginzburg models for toric orbifolds and global $tt^*$ geometry, arXiv:1605.08937.
- Matsumura H., Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, Vol. 8, Cambridge University Press, Cambridge, 1989.
- Matusevich L.F., Miller E., Walther U., Homological methods for hypergeometric families, J. Amer. Math. Soc. 18 (2005), 919-941, arXiv:math.AG/0406383.
- Milnor J., Singular points of complex hypersurfaces, Annals of Mathematics Studies, Vol. 61, Princeton University Press, Princeton, N.J., University of Tokyo Press, Tokyo, 1968.
- Némethi A., Zaharia A., Milnor fibration at infinity, Indag. Math. (N.S.) 3 (1992), 323-335.
- Oda T., Park H.S., Linear Gale transforms and Gel'fand-Kapranov-Zelevinskij decompositions, Tohoku Math. J. 43 (1991), 375-399.
- Orlov D.O., Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Izv. Math. 41 (1993), 133-141.
- Pandharipande R., Pixton A., Zvonkine D., Relations on $\overline{\mathcal M}_{g,n}$ via $3$-spin structures, J. Amer. Math. Soc. 28 (2015), 279-309, arXiv:1303.1043.
- Parusiński A., On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384.
- Pham F., La descente des cols par les onglets de Lefschetz, avec vues sur Gauss-Manin, Astérisque 130 (1985), 11-47.
- Reichelt T., Sevenheck C., Logarithmic Frobenius manifolds, hypergeometric systems and quantum $\mathcal D$-modules, J. Algebraic Geom. 24 (2015), 201-281, arXiv:1010.2118.
- Ruan Y., The cohomology ring of crepant resolutions of orbifolds, in Gromov-Witten theory of spin curves and orbifolds, Contemp. Math., Vol. 403, Amer. Math. Soc., Providence, RI, 2006, 117-126, arXiv:math.AG/0108195.
- Sabbah C., Hypergeometric period for a tame polynomial, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 603-608, A longer version published in Port. Math. (N.S.) 63 (2006), 173-226, arXiv:math.AG/9805077.
- Sabbah C., Polarizable twistor $\mathcal D$-modules, Astérisque 300 (2005), vi+208 pages, arXiv:math.AG/0503038.
- Sabbah C., Isomonodromic deformations and Frobenius manifolds. An introduction, Universitext, Springer-Verlag London, Ltd., London, 2007.
- Saito K., The higher residue pairings $K_{F}^{(k)}$ for a family of hypersurface singular points, in Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., Vol. 40, Amer. Math. Soc., Providence, RI, 1983, 441-463.
- Saito K., Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci. 19 (1983), 1231-1264.
- Saito M., On the structure of Brieskorn lattice, Ann. Inst. Fourier (Grenoble) 39 (1989), 27-72.
- Sanda F., Fukaya categories and blow-ups, Ph.D. Thesis, Nagoya University, 2015, available at https://doi.org/10.15083/00008467.
- Sanda F., Computation of quantum cohomology from Fukaya categories, arXiv:1712.03924.
- Sanda F., Shamoto Y., An analogue of Dubrovin's conjecture, Ann. Inst. Fourier (Grenoble), to appear, arXiv:1705.05989.
- Shadrin S., BCOV theory via Givental group action on cohomological fields theories, Mosc. Math. J. 9 (2009), 411-429, arXiv:0810.0725.
- The Stacks Project Authors, Stacks Project, 2020, https://stacks.math.columbia.edu/.
- Teleman C., The structure of 2D semi-simple field theories, Invent. Math. 188 (2012), 525-588, arXiv:0712.0160.
- Tseng H.-H., Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol. 14 (2010), 1-81, arXiv:math.AG/0506111.
- Tyomkin I., Tropical geometry and correspondence theorems via toric stacks, Math. Ann. 353 (2012), 945-995, arXiv:1001.1554.
- Wasow W., Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, Vol. 14, Interscience Publishers John Wiley & Sons, Inc., New York - London - Sydney, 1965.
- Zariski O., Samuel P., Commutative algebra, Vol. II, Graduate Texts in Mathematics, Vol. 29, Springer-Verlag, New York - Heidelberg, 1975.
- Zong Z., Equivariant Gromov-Witten theory of GKM orbifolds, arXiv:1604.07270.
|
|