Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 026, 38 pages      arXiv:1804.06048      https://doi.org/10.3842/SIGMA.2020.026
Contribution to the Special Issue on Integrability, Geometry, Moduli in honor of Motohico Mulase for his 65th birthday

Virtual Classes for the Working Mathematician

Luca Battistella a, Francesca Carocci b and Cristina Manolache c
a) Mathematikon, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
b) JCMB, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
c) Hicks building, 226 Hounsfield Rd, Broomhall, Sheffield S3 7RH, UK

Received October 03, 2019, in final form March 25, 2020; Published online April 09, 2020

Abstract
This note is intended to be a friendly introduction to virtual classes. We review virtual classes and we give a number of properties and applications. We also include a new virtual push-forward theorem and many computations of virtual classes in simple examples.

Key words: intersection theory; virtual classes; Gromov-Witten theory; moduli spaces.

pdf (601 kb)   tex (42 kb)  

References

  1. Aluffi P., Computing characteristic classes of projective schemes, J. Symbolic Comput. 35 (2003), 3-19, arXiv:math.AG/0204230.
  2. Aluffi P., Segre classes as integrals over polytopes, J. Eur. Math. Soc. 18 (2016), 2849-2863, arXiv:1307.0830.
  3. Aluffi P., Brasselet J.-P., Interpolation of characteristic classes of singular hypersurfaces, Adv. Math. 180 (2003), 692-704, arXiv:math.AG/0107185.
  4. Battistella L., Carocci F., Manolache C., Reduced invariants from cuspidal maps, arXiv:1801.07739.
  5. Behrend K., Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997), 601-617, arXiv:alg-geom/9601011.
  6. Behrend K., Fantechi B., The intrinsic normal cone, Invent. Math. 128 (1997), 45-88, arXiv:alg-geom/9601010.
  7. Chang H.-L., Li J., Semi-perfect obstruction theory and Donaldson-Thomas invariants of derived objects, Comm. Anal. Geom. 19 (2011), 807-830, arXiv:1105.3261.
  8. Chang H.-L., Li J., An algebraic proof of the hyperplane property of the genus one GW-invariants of quintics, J. Differential Geom. 100 (2015), 251-299, arXiv:1206.5390.
  9. Ciocan-Fontanine I., Kim B., Moduli stacks of stable toric quasimaps, Adv. Math. 225 (2010), 3022-3051, arXiv:0908.4446.
  10. Ciocan-Fontanine I., Kim B., Maulik D., Stable quasimaps to GIT quotients, J. Geom. Phys. 75 (2014), 17-47, arXiv:1106.3724.
  11. Coates T., Gholampour A., Iritani H., Jiang Y., Johnson P., Manolache C., The quantum Lefschetz hyperplane principle can fail for positive orbifold hypersurfaces, Math. Res. Lett. 19 (2012), 997-1005, arXiv:1202.2754.
  12. Coates T., Manolache C., A splitting of the virtual class for genus one stable maps, arXiv:1809.04162.
  13. Eklund D., Jost C., Peterson C., A method to compute Segre classes of subschemes of projective space, J. Algebra Appl. 12 (2013), 1250142, 15 pages, arXiv:1109.5895.
  14. Fulton W., Intersection theory, 2nd ed., textitErgebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Vol. 2, Springer-Verlag, Berlin, 1998.
  15. Fulton W., Pandharipande R., Notes on stable maps and quantum cohomology, in Algebraic Geometry - Santa Cruz 1995, Proc. Sympos. Pure Math., Vol. 62, Amer. Math. Soc., Providence, RI, 1997, 45-96, arXiv:alg-geom/9608011.
  16. Graber T., Pandharipande R., Localization of virtual classes, Invent. Math. 135 (1999), 487-518, arXiv:alg-geom/9708001.
  17. Helmer M., Algorithms to compute the topological Euler characteristic, Chern-Schwartz-MacPherson class and Segre class of projective varieties, J. Symbolic Comput. 73 (2016), 120-138, arXiv:1402.2930.
  18. Helmer M., A direct algorithm to compute the topological Euler characteristic and Chern-Schwartz-MacPherson class of projective complete intersection varieties, Theoret. Comput. Sci. 681 (2017), 54-74, arXiv:1410.4113.
  19. Hu Y., Li J., Genus-one stable maps, local equations, and Vakil-Zinger's desingularization, Math. Ann. 348 (2010), 929-963, arXiv:0812.4286.
  20. Kim B., Kresch A., Pantev T., Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra 179 (2003), 127-136.
  21. Kontsevich M., Enumeration of rational curves via torus actions, in The Moduli Space of Curves (Texel Island, 1994), Progr. Math., Vol. 129, Birkhäuser Boston, Boston, MA, 1995, 335-368, arXiv:hep-th/9405035.
  22. Kresch A., Cycle groups for Artin stacks, Invent. Math. 138 (1999), 495-536, arXiv:math.AG/9810166.
  23. Li J., Tian G., Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), 119-174, arXiv:alg-geom/9602007.
  24. Li J., Zinger A., On the genus-one Gromov-Witten invariants of complete intersections, J. Differential Geom. 82 (2009), 641-690, arXiv:math.AG/0507104.
  25. Manolache C., Virtual pull-backs, J. Algebraic Geom. 21 (2012), 201-245, arXiv:0805.2065.
  26. Manolache C., Virtual push-forwards, Geom. Topol. 16 (2012), 2003-2036, arXiv:1010.2704.
  27. Moe T.K., Qviller N., Segre classes on smooth projective toric varieties, Math. Z. 275 (2013), 529-548, arXiv:1204.4884.
  28. Pandharipande R., Thomas R.P., Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), 407-447, arXiv:0707.2348.
  29. Pandharipande R., Thomas R.P., 13/2 ways of counting curves, in Moduli Spaces, London Math. Soc. Lecture Note Ser., Vol. 411, Cambridge University Press, Cambridge, 2014, 282-333, arXiv:1111.1552.
  30. Siebert B., Virtual fundamental classes, global normal cones and Fulton's canonical classes, in Frobenius Manifolds, Aspects Math., Vol. E36, Friedr. Vieweg, Wiesbaden, 2004, 341-358, arXiv:math.AG/0509076.
  31. Thomas R.P., A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on $K3$ fibrations, J. Differential Geom. 54 (2000), 367-438, arXiv:math.AG/9806111.
  32. Vakil R., The enumerative geometry of rational and elliptic curves in projective space, J. Reine Angew. Math. 529 (2000), 101-153, arXiv:alg-geom/9709007.
  33. Vakil R., Zinger A., A desingularization of the main component of the moduli space of genus-one stable maps into ${\mathbb P}^n$, Geom. Topol. 12 (2008), 1-95, arXiv:math.AG/0603353.
  34. Vistoli A., Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), 613-670.
  35. Zinger A., Standard versus reduced genus-one Gromov-Witten invariants, Geom. Topol. 12 (2008), 1203-1241, arXiv:0706.0715.
  36. Zinger A., Reduced genus-one Gromov-Witten invariants, J. Differential Geom. 83 (2009), 407-460, arXiv:math.AG/0507103.
  37. Zinger A., The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces, J. Amer. Math. Soc. 22 (2009), 691-737, arXiv:0705.2397.

Previous article  Next article  Contents of Volume 16 (2020)