|
SIGMA 16 (2020), 025, 22 pages arXiv:1711.07785
https://doi.org/10.3842/SIGMA.2020.025
Presentations of Cluster Modular Groups and Generation by Cluster Dehn Twists
Tsukasa Ishibashi
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan
Received January 01, 2020, in final form March 27, 2020; Published online April 07, 2020
Abstract
We give a method to compute presentations of saturated cluster modular groups. Using this, we obtain finite presentations of the saturated cluster modular groups of finite mutation type $X_6$ and $X_7$. We verify that the cluster modular groups of finite mutation type $\widetilde{E}_6$, $\widetilde{E}_7$, $\widetilde{E}_8$, $G_2^{(*,*)}$, $X_6$ and $X_7$ are virtually generated by cluster Dehn twists.
Key words: cluster algebras; cluster modular groups; mapping class groups; quivers of finite mutation type.
pdf (520 kb)
tex (29 kb)
References
- Assem I., Schiffler R., Shramchenko V., Cluster automorphisms, Proc. Lond. Math. Soc. 104 (2012), 1271-1302, arXiv:1009.0742.
- Bridgeland T., Smith I., Quadratic differentials as stability conditions, Publ. Math. Inst. Hautes Études Sci. 121 (2015), 155-278, arXiv:1302.7030.
- Brown K.S., Presentations for groups acting on simply-connected complexes, J. Pure Appl. Algebra 32 (1984), 1-10.
- Farb B., Margalit D., A primer on mapping class groups, Princeton Mathematical Series, Vol. 49, Princeton University Press, Princeton, NJ, 2012.
- Felikson A., Shapiro M., Tumarkin P., Cluster algebras of finite mutation type via unfoldings, Int. Math. Res. Not. 2012 (2012), 1768-1804, arXiv:1006.4276.
- Felikson A., Shapiro M., Tumarkin P., Skew-symmetric cluster algebras of finite mutation type, J. Eur. Math. Soc. 14 (2012), 1135-1180, arXiv:0811.1703.
- Fock V.V., Goncharov A.B., Cluster ${\mathcal X}$-varieties, amalgamation, and Poisson-Lie groups, in Algebraic Geometry and Number Theory, Progr. Math., Vol. 253, Birkhäuser Boston, Boston, MA, 2006, 27-68, arXiv:math.RT/0508408.
- Fock V.V., Goncharov A.B., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006), 1-211, arXiv:math.AG/0311149.
- Fock V.V., Goncharov A.B., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 865-930, arXiv:math.AG/0311245.
- Fock V.V., Goncharov A.B., The quantum dilogarithm and representations of quantum cluster varieties, Invent. Math. 175 (2009), 223-286, arXiv:math.QA/0702397.
- Fomin S., Shapiro M., Thurston D., Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), 83-146, arXiv:math.RA/0608367.
- Fomin S., Zelevinsky A., Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), 63-121, arXiv:math.RA/0208229.
- Fomin S., Zelevinsky A., Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112-164, arXiv:math.RA/0602259.
- Fraser C., Quasi-homomorphisms of cluster algebras, Adv. in Appl. Math. 81 (2016), 40-77, arXiv:1509.05385.
- Ishibashi T., On a Nielsen-Thurston classification theory for cluster modular groups, Ann. Inst. Fourier (Grenoble) 69 (2019), 515-560, arXiv:1704.06586.
- Kato A., Terashima Y., Quiver mutation loops and partition $q$-series, Comm. Math. Phys. 336 (2015), 811-830, arXiv:1403.6569.
- Kim H.K., Yamazaki M., Comments on exchange graphs in cluster algebras, Exp. Math. 29 (2020), 79-100, arXiv:1612.00145.
- Penner R.C., Decorated Teichmüller theory, QGM Master Class Series, European Mathematical Society (EMS), Zürich, 2012.
- Zickert C.K., Fock-Goncharov coordinates for rank two Lie groups, Math. Z. 294 (2020), 251-286, arXiv:1605.08297.
|
|