Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 025, 22 pages      arXiv:1711.07785      https://doi.org/10.3842/SIGMA.2020.025

Presentations of Cluster Modular Groups and Generation by Cluster Dehn Twists

Tsukasa Ishibashi
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan

Received January 01, 2020, in final form March 27, 2020; Published online April 07, 2020

Abstract
We give a method to compute presentations of saturated cluster modular groups. Using this, we obtain finite presentations of the saturated cluster modular groups of finite mutation type $X_6$ and $X_7$. We verify that the cluster modular groups of finite mutation type $\widetilde{E}_6$, $\widetilde{E}_7$, $\widetilde{E}_8$, $G_2^{(*,*)}$, $X_6$ and $X_7$ are virtually generated by cluster Dehn twists.

Key words: cluster algebras; cluster modular groups; mapping class groups; quivers of finite mutation type.

pdf (520 kb)   tex (29 kb)  

References

  1. Assem I., Schiffler R., Shramchenko V., Cluster automorphisms, Proc. Lond. Math. Soc. 104 (2012), 1271-1302, arXiv:1009.0742.
  2. Bridgeland T., Smith I., Quadratic differentials as stability conditions, Publ. Math. Inst. Hautes Études Sci. 121 (2015), 155-278, arXiv:1302.7030.
  3. Brown K.S., Presentations for groups acting on simply-connected complexes, J. Pure Appl. Algebra 32 (1984), 1-10.
  4. Farb B., Margalit D., A primer on mapping class groups, Princeton Mathematical Series, Vol. 49, Princeton University Press, Princeton, NJ, 2012.
  5. Felikson A., Shapiro M., Tumarkin P., Cluster algebras of finite mutation type via unfoldings, Int. Math. Res. Not. 2012 (2012), 1768-1804, arXiv:1006.4276.
  6. Felikson A., Shapiro M., Tumarkin P., Skew-symmetric cluster algebras of finite mutation type, J. Eur. Math. Soc. 14 (2012), 1135-1180, arXiv:0811.1703.
  7. Fock V.V., Goncharov A.B., Cluster ${\mathcal X}$-varieties, amalgamation, and Poisson-Lie groups, in Algebraic Geometry and Number Theory, Progr. Math., Vol. 253, Birkhäuser Boston, Boston, MA, 2006, 27-68, arXiv:math.RT/0508408.
  8. Fock V.V., Goncharov A.B., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006), 1-211, arXiv:math.AG/0311149.
  9. Fock V.V., Goncharov A.B., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 865-930, arXiv:math.AG/0311245.
  10. Fock V.V., Goncharov A.B., The quantum dilogarithm and representations of quantum cluster varieties, Invent. Math. 175 (2009), 223-286, arXiv:math.QA/0702397.
  11. Fomin S., Shapiro M., Thurston D., Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), 83-146, arXiv:math.RA/0608367.
  12. Fomin S., Zelevinsky A., Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), 63-121, arXiv:math.RA/0208229.
  13. Fomin S., Zelevinsky A., Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112-164, arXiv:math.RA/0602259.
  14. Fraser C., Quasi-homomorphisms of cluster algebras, Adv. in Appl. Math. 81 (2016), 40-77, arXiv:1509.05385.
  15. Ishibashi T., On a Nielsen-Thurston classification theory for cluster modular groups, Ann. Inst. Fourier (Grenoble) 69 (2019), 515-560, arXiv:1704.06586.
  16. Kato A., Terashima Y., Quiver mutation loops and partition $q$-series, Comm. Math. Phys. 336 (2015), 811-830, arXiv:1403.6569.
  17. Kim H.K., Yamazaki M., Comments on exchange graphs in cluster algebras, Exp. Math. 29 (2020), 79-100, arXiv:1612.00145.
  18. Penner R.C., Decorated Teichmüller theory, QGM Master Class Series, European Mathematical Society (EMS), Zürich, 2012.
  19. Zickert C.K., Fock-Goncharov coordinates for rank two Lie groups, Math. Z. 294 (2020), 251-286, arXiv:1605.08297.

Previous article  Next article  Contents of Volume 16 (2020)