Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 018, 17 pages      arXiv:1910.11446      https://doi.org/10.3842/SIGMA.2020.018

Finite-Dimensional Irreducible Modules of the Racah Algebra at Characteristic Zero

Hau-Wen Huang a and Sarah Bockting-Conrad b
a)  Department of Mathematics, National Central University, Chung-Li 32001, Taiwan
b)  Department of Mathematical Sciences, DePaul University, Chicago, Illinois, USA

Received November 12, 2019, in final form March 16, 2020; Published online March 24, 2020

Abstract
Assume that ${\mathbb F}$ is an algebraically closed field with characteristic zero. The Racah algebra $\Re$ is the unital associative ${\mathbb F}$-algebra defined by generators and relations in the following way. The generators are $A$, $B$, $C$, $D$ and the relations assert that $[A,B]=[B,C]=[C,A]=2D$ and that each of $[A,D]+AC-BA$, $[B,D]+BA-CB$, $[C,D]+CB-AC$ is central in $\Re$. In this paper we discuss the finite-dimensional irreducible $\Re$-modules in detail and classify them up to isomorphism. To do this, we apply an infinite-dimensional $\Re$-module and its universal property. We additionally give the necessary and sufficient conditions for $A$, $B$, $C$ to be diagonalizable on finite-dimensional irreducible $\Re$-modules.

Key words: Racah algebra; quadratic algebra; irreducible modules; tridiagonal pairs; universal property.

pdf (398 kb)   tex (18 kb)  

References

  1. Bockting-Conrad S., Huang H.-W., The Casimir elements of the Racah algebra, arXiv:1711.09574.
  2. Bu L., Hou B., Gao S., The classification of finite-dimensional irreducible modules of the Racah algebra, Comm. Algebra 47 (2019), 1869-1891.
  3. De Bie H., Genest V.X., van de Vijver W., Vinet L., A higher rank Racah algebra and the ${\mathbb Z}^n_2$ Laplace-Dunkl operator, J. Phys. A: Math. Theor. 51 (2018), 025203, 20 pages, arXiv:1610.02638.
  4. De Bie H., van de Vijver W., A discrete realization of the higher rank Racah algebra, arXiv:1808.10520.
  5. Gal'bert O.F., Granovskiǐ Ya.I., Zhedanov A.S., Dynamical symmetry of anisotropic singular oscillator, Phys. Lett. A 153 (1991), 177-180.
  6. Genest V.X., Vinet L., Zhedanov A., The equitable Racah algebra from three $\mathfrak{su}(1,1)$ algebras, J. Phys. A: Math. Theor. 47 (2014), 025203, 12 pages, arXiv:1309.3540.
  7. Genest V.X., Vinet L., Zhedanov A., The Racah algebra and superintegrable models, J. Phys. Conf. Ser. 512 (2014), 012011, 15 pages, arXiv:1312.3874.
  8. Genest V.X., Vinet L., Zhedanov A., Superintegrability in two dimensions and the Racah-Wilson algebra, Lett. Math. Phys. 104 (2014), 931-952, arXiv:1307.5539.
  9. Genest V.X., Vinet L., Zhedanov A., Embeddings of the Racah algebra into the Bannai-Ito algebra, SIGMA 11 (2015), 050, 11 pages, arXiv:1504.00558.
  10. Granovskiǐ Ya.A., Zhedanov A.S., Nature of the symmetry group of the $6j$-symbol, Soviet Phys. JETP 94 (1988), 1982-1985.
  11. Granovskiǐ Ya.I., Zhedanov A.S., Lutsenko I.M., Quadratic algebras and dynamical symmetry of the Schrödinger equation, Soviet Phys. JETP 99 (1991), 205-209.
  12. Hou B., Wang M., Gao S., The classification of finite-dimensional irreducible modules of Bannai/Ito algebra, Comm. Algebra 44 (2016), 919-943.
  13. Huang H.-W., Finite-dimensional irreducible modules of the universal Askey-Wilson algebra, Comm. Math. Phys. 340 (2015), 959-984, arXiv:1210.1740.
  14. Huang H.-W., Finite-dimensional modules of the Racah algebra and the additive DAHA of type $\big(C_1^\vee,C_1\big)$, arXiv:1906.09160.
  15. Huang H.W., The Racah algebra as a subalgebra of the Bannai-Ito algebra, arXiv:1906.11745.
  16. Huang H.-W., Finite-dimensional irreducible modules of Bannai-Ito algebra at characteristic zero, arXiv:1910.11447.
  17. Lévy-Leblond J.-M., Lévy-Nahas M., Symmetrical coupling of three angular momenta, J. Math. Phys. 6 (1965), 1372-1380.
  18. Terwilliger P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), 149-203, arXiv:math.RA/0406555.

Previous article  Next article  Contents of Volume 16 (2020)