Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 012, 17 pages      arXiv:1908.02365      https://doi.org/10.3842/SIGMA.2020.012

Quasi-Isometric Bounded Generation by ${\mathbb Q}$-Rank-One Subgroups

Dave Witte Morris
Department of Mathematics and Computer Science, University of Lethbridge,Lethbridge, Alberta, T1K 3M4, Canada

Received August 16, 2019, in final form March 05, 2020; Published online March 11, 2020

Abstract
We say that a subset $X$ quasi-isometrically boundedly generates a finitely generated group $\Gamma$ if each element $\gamma$ of a finite-index subgroup of $\Gamma$ can be written as a product $\gamma = x_1 x_2 \cdots x_r$ of a bounded number of elements of $X$, such that the word length of each $x_i$ is bounded by a constant times the word length of $\gamma$. A. Lubotzky, S. Mozes, and M.S. Raghunathan observed in 1993 that ${\rm SL}(n,{\mathbb Z})$ is quasi-isometrically boundedly generated by the elements of its natural ${\rm SL}(2,{\mathbb Z})$ subgroups. We generalize (a slightly weakened version of) this by showing that every $S$-arithmetic subgroup of an isotropic, almost-simple ${\mathbb Q}$-group is quasi-isometrically boundedly generated by standard ${\mathbb Q}$-rank-1 subgroups.

Key words: arithmetic group; quasi-isometric; bounded generation; discrete subgroup.

pdf (447 kb)   tex (43 kb)  

References

  1. Borel A., Introduction to arithmetic groups, Amer. Math. Soc., Providence, RI, 2019.
  2. Borel A., Tits J., Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55-150.
  3. Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, Vol. 80, Academic Press, Inc., New York - London, 1978.
  4. Knapp A.W., Lie groups beyond an introduction, 2nd ed., Progress in Mathematics, Vol. 140, Birkhäuser Boston, Inc., Boston, MA, 2002.
  5. Lubotzky A., Mozes S., Raghunathan M.S., Cyclic subgroups of exponential growth and metrics on discrete groups, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 735-740.
  6. Lubotzky A., Mozes S., Raghunathan M.S., The word and Riemannian metrics on lattices of semisimple groups, Inst. Hautes Études Sci. Publ. Math. 91 (2000), 5-53.
  7. Morris D.W., Introduction to arithmetic groups, Deductive Press, 2015, arXiv:math.DG/0106063.
  8. Platonov V., Rapinchuk A., Algebraic groups and number theory, Pure and Applied Mathematics, Vol. 139, Academic Press, Inc., Boston, MA, 1994.
  9. Popov V.L., Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector fiberings, Math. USSR Izv. 8 (1974), 301-327.
  10. Rosengarten Z., Picard groups of linear algebraic groups, arXiv:1806.10292.
  11. Tits J., Classification of algebraic semisimple groups, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, 33-62.
  12. Tits J., Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971), 196-220.

Previous article  Next article  Contents of Volume 16 (2020)