Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 007, 8 pages      arXiv:1712.08478      https://doi.org/10.3842/SIGMA.2020.007
Contribution to the Special Issue on Cluster Algebras

Some Consequences of Categorification

Dylan Rupel a and Salvatore Stella b
a)  Pasadena Unified School District, Math Academy, Pasadena, CA 91101, USA
b)  Università degli studi di Roma ''La Sapienza'', Dipartimento di Matematica ''G. Castelnuovo'', P.le Aldo Moro, 5 - 00185 Rome, Italy

Received October 16, 2019, in final form January 21, 2020; Published online January 30, 2020

Abstract
Several conjectures on acyclic skew-symmetrizable cluster algebras are proven as direct consequences of their categorification via valued quivers. These include conjectures of Fomin-Zelevinsky, Reading-Speyer, and Reading-Stella related to $\mathbf{d}$-vectors, $\mathbf{g}$-vectors, and $F$-polynomials.

Key words: acyclc cluster algebras; categorification; valued quivers.

pdf (348 kb)   tex (17 kb)  

References

  1. Berenstein A., Zelevinsky A., Quantum cluster algebras, Adv. Math. 195 (2005), 405-455, arXiv:math.QA/0404446.
  2. Buan A.B., Marsh R., Reineke M., Reiten I., Todorov G., Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572-618, arXiv:math.RT/0402054.
  3. Caldero P., Chapoton F., Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), 595-616, arXiv:math.RT/0410187.
  4. Caldero P., Chapoton F., Schiffler R., Quivers with relations arising from clusters ($A_n$ case), Trans. Amer. Math. Soc. 358 (2006), 1347-1364, arXiv:math.RT/0401316.
  5. Caldero P., Keller B., From triangulated categories to cluster algebras. II, Ann. Sci. École Norm. Sup. (4) 39 (2006), 983-1009, arXiv:math.RT/0510251.
  6. Caldero P., Keller B., From triangulated categories to cluster algebras, Invent. Math. 172 (2008), 169-211, arXiv:math.RT/0506018.
  7. Demonet L., Mutations of group species with potentials and their representations. Applications to cluster algebras, arXiv:1003.5078.
  8. Demonet L., Categorification of skew-symmetrizable cluster algebras, Algebr. Represent. Theory 14 (2011), 1087-1162, arXiv:0909.1633.
  9. Derksen H., Weyman J., Zelevinsky A., Quivers with potentials and their representations. I. Mutations, Selecta Math. (N.S.) 14 (2008), 59-119, arXiv:0704.0649.
  10. Dlab V., Ringel C.M., Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 6 (1976), v+57 pages.
  11. Fomin S., Zelevinsky A., Cluster algebras: notes for the CDM-03 conference, in Current Developments in Mathematics, 2003, Int. Press, Somerville, MA, 2003, 1-34, arXiv:math.RT/0311493.
  12. Fomin S., Zelevinsky A., Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112-164, arXiv:math.RA/0602259.
  13. Geiss C., Leclerc B., Schröer J., Semicanonical bases and preprojective algebras, Ann. Sci. École Norm. Sup. (4) 38 (2005), 193-253, arXiv:math.RT/0402448.
  14. Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, Vol. 167, Amer. Math. Soc., Providence, RI, 2010.
  15. Happel D., Rickard J., Schofield A., Piecewise hereditary algebras, Bull. London Math. Soc. 20 (1988), 23-28.
  16. Happel D., Ringel C.M., Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
  17. Hohlweg C., Pilaud V., Stella S., Polytopal realizations of finite type ${\bf g}$-vector fans, Adv. Math. 328 (2018), 713-749, arXiv:1703.09551.
  18. Iyama O., Yoshino Y., Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), 117-168, arXiv:math.RT/0607736.
  19. Keller B., Cluster algebras, quiver representations and triangulated categories, in Triangulated Categories, London Math. Soc. Lecture Note Ser., Vol. 375, Cambridge University Press, Cambridge, 2010, 76-160, arXiv:0807.1960.
  20. Labardini-Fragoso D., Zelevinsky A., Strongly primitive species with potentials I: mutations, Bol. Soc. Mat. Mex. 22 (2016), 47-115, arXiv:1306.3495.
  21. Marsh R., Reineke M., Zelevinsky A., Generalized associahedra via quiver representations, Trans. Amer. Math. Soc. 355 (2003), 4171-4186, arXiv:math.RT/0205152.
  22. Palu Y., Cluster characters for 2-Calabi-Yau triangulated categories, Ann. Inst. Fourier (Grenoble) 58 (2008), 2221-2248, arXiv:math.RT/0703540.
  23. Plamondon P.-G., Cluster characters for cluster categories with infinite-dimensional morphism spaces, Adv. Math. 227 (2011), 1-39, arXiv:1002.4956.
  24. Qin F., Quantum cluster variables via Serre polynomials, J. Reine Angew. Math. 668 (2012), 149-190, arXiv:1004.4171.
  25. Reading N., Speyer D.E., Combinatorial frameworks for cluster algebras, Int. Math. Res. Not. 2016 (2016), 109-173, arXiv:1111.2652.
  26. Reading N., Stella S., An affine almost positive roots model, J. Comb. Algebra, to appear, arXiv:1707.00340.
  27. Reading N., Stella S., Initial-seed recursions and dualities for $d$-vectors, Pacific J. Math. 293 (2018), 179-206, arXiv:1409.4723.
  28. Rupel D., On a quantum analog of the Caldero-Chapoton formula, Int. Math. Res. Not. 2011 (2011), 3207-3236.
  29. Rupel D., Quantum cluster characters for valued quivers, Trans. Amer. Math. Soc. 367 (2015), 7061-7102, arXiv:1109.6694.
  30. Rupel D., Stella S., Williams H., Affine cluster monomials are generalized minors, Compos. Math. 155 (2019), 1301-1326, arXiv:1712.09143.

Previous article  Next article  Contents of Volume 16 (2020)