|
SIGMA 16 (2020), 007, 8 pages arXiv:1712.08478
https://doi.org/10.3842/SIGMA.2020.007
Contribution to the Special Issue on Cluster Algebras
Some Consequences of Categorification
Dylan Rupel a and Salvatore Stella b
a) Pasadena Unified School District, Math Academy, Pasadena, CA 91101, USA
b) Università degli studi di Roma ''La Sapienza'', Dipartimento di Matematica ''G. Castelnuovo'', P.le Aldo Moro, 5 - 00185 Rome, Italy
Received October 16, 2019, in final form January 21, 2020; Published online January 30, 2020
Abstract
Several conjectures on acyclic skew-symmetrizable cluster algebras are proven as direct consequences of their categorification via valued quivers. These include conjectures of Fomin-Zelevinsky, Reading-Speyer, and Reading-Stella related to $\mathbf{d}$-vectors, $\mathbf{g}$-vectors, and $F$-polynomials.
Key words: acyclc cluster algebras; categorification; valued quivers.
pdf (348 kb)
tex (17 kb)
References
- Berenstein A., Zelevinsky A., Quantum cluster algebras, Adv. Math. 195 (2005), 405-455, arXiv:math.QA/0404446.
- Buan A.B., Marsh R., Reineke M., Reiten I., Todorov G., Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572-618, arXiv:math.RT/0402054.
- Caldero P., Chapoton F., Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), 595-616, arXiv:math.RT/0410187.
- Caldero P., Chapoton F., Schiffler R., Quivers with relations arising from clusters ($A_n$ case), Trans. Amer. Math. Soc. 358 (2006), 1347-1364, arXiv:math.RT/0401316.
- Caldero P., Keller B., From triangulated categories to cluster algebras. II, Ann. Sci. École Norm. Sup. (4) 39 (2006), 983-1009, arXiv:math.RT/0510251.
- Caldero P., Keller B., From triangulated categories to cluster algebras, Invent. Math. 172 (2008), 169-211, arXiv:math.RT/0506018.
- Demonet L., Mutations of group species with potentials and their representations. Applications to cluster algebras, arXiv:1003.5078.
- Demonet L., Categorification of skew-symmetrizable cluster algebras, Algebr. Represent. Theory 14 (2011), 1087-1162, arXiv:0909.1633.
- Derksen H., Weyman J., Zelevinsky A., Quivers with potentials and their representations. I. Mutations, Selecta Math. (N.S.) 14 (2008), 59-119, arXiv:0704.0649.
- Dlab V., Ringel C.M., Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 6 (1976), v+57 pages.
- Fomin S., Zelevinsky A., Cluster algebras: notes for the CDM-03 conference, in Current Developments in Mathematics, 2003, Int. Press, Somerville, MA, 2003, 1-34, arXiv:math.RT/0311493.
- Fomin S., Zelevinsky A., Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112-164, arXiv:math.RA/0602259.
- Geiss C., Leclerc B., Schröer J., Semicanonical bases and preprojective algebras, Ann. Sci. École Norm. Sup. (4) 38 (2005), 193-253, arXiv:math.RT/0402448.
- Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, Vol. 167, Amer. Math. Soc., Providence, RI, 2010.
- Happel D., Rickard J., Schofield A., Piecewise hereditary algebras, Bull. London Math. Soc. 20 (1988), 23-28.
- Happel D., Ringel C.M., Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
- Hohlweg C., Pilaud V., Stella S., Polytopal realizations of finite type ${\bf g}$-vector fans, Adv. Math. 328 (2018), 713-749, arXiv:1703.09551.
- Iyama O., Yoshino Y., Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), 117-168, arXiv:math.RT/0607736.
- Keller B., Cluster algebras, quiver representations and triangulated categories, in Triangulated Categories, London Math. Soc. Lecture Note Ser., Vol. 375, Cambridge University Press, Cambridge, 2010, 76-160, arXiv:0807.1960.
- Labardini-Fragoso D., Zelevinsky A., Strongly primitive species with potentials I: mutations, Bol. Soc. Mat. Mex. 22 (2016), 47-115, arXiv:1306.3495.
- Marsh R., Reineke M., Zelevinsky A., Generalized associahedra via quiver representations, Trans. Amer. Math. Soc. 355 (2003), 4171-4186, arXiv:math.RT/0205152.
- Palu Y., Cluster characters for 2-Calabi-Yau triangulated categories, Ann. Inst. Fourier (Grenoble) 58 (2008), 2221-2248, arXiv:math.RT/0703540.
- Plamondon P.-G., Cluster characters for cluster categories with infinite-dimensional morphism spaces, Adv. Math. 227 (2011), 1-39, arXiv:1002.4956.
- Qin F., Quantum cluster variables via Serre polynomials, J. Reine Angew. Math. 668 (2012), 149-190, arXiv:1004.4171.
- Reading N., Speyer D.E., Combinatorial frameworks for cluster algebras, Int. Math. Res. Not. 2016 (2016), 109-173, arXiv:1111.2652.
- Reading N., Stella S., An affine almost positive roots model, J. Comb. Algebra, to appear, arXiv:1707.00340.
- Reading N., Stella S., Initial-seed recursions and dualities for $d$-vectors, Pacific J. Math. 293 (2018), 179-206, arXiv:1409.4723.
- Rupel D., On a quantum analog of the Caldero-Chapoton formula, Int. Math. Res. Not. 2011 (2011), 3207-3236.
- Rupel D., Quantum cluster characters for valued quivers, Trans. Amer. Math. Soc. 367 (2015), 7061-7102, arXiv:1109.6694.
- Rupel D., Stella S., Williams H., Affine cluster monomials are generalized minors, Compos. Math. 155 (2019), 1301-1326, arXiv:1712.09143.
|
|