Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 003, 20 pages      arXiv:1908.01530      https://doi.org/10.3842/SIGMA.2020.003
Contribution to the Special Issue on Elliptic Integrable Systems, Special Functions and Quantum Field Theory

On Complex Gamma-Function Integrals

Sergey É. Derkachov a and Alexander N. Manashov ba
a) St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka 27, 191023 St. Petersburg, Russia
b) Institut für Theoretische Physik, Universität Hamburg, D-22761 Hamburg, Germany

Received October 15, 2019, in final form January 14, 2020; Published online January 18, 2020

Abstract
It was observed recently that relations between matrix elements of certain operators in the ${\rm SL}(2,\mathbb R)$ spin chain models take the form of multidimensional integrals derived by R.A. Gustafson. The spin magnets with ${\rm SL}(2,\mathbb C)$ symmetry group and ${\rm L}_2(\mathbb C)$ as a local Hilbert space give rise to a new type of $\Gamma$-function integrals. In this work we present a direct calculation of two such integrals. We also analyse properties of these integrals and show that they comprise the star-triangle relations recently discussed in the literature. It is also shown that in the quasi-classical limit these integral identities are reduced to the duality relations for Dotsenko-Fateev integrals.

Key words: Mellin-Barnes integrals; star-triangle relation.

pdf (466 kb)   tex (31 kb)  

References

  1. Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge, 1999.
  2. Baseilhac P., Fateev V.A., Expectation values of local fields for a two-parameter family of integrable models and related perturbed conformal field theories, Nuclear Phys. B 532 (1998), 567-587, arXiv:hep-th/9906010.
  3. Baxter R.J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982.
  4. Bazhanov V.V., Kels A.P., Sergeev S.M., Quasi-classical expansion of the star-triangle relation and integrable systems on quad-graphs, J. Phys. A: Math. Theor. 49 (2016), 464001, 44 pages, arXiv:1602.07076.
  5. Bazhanov V.V., Mangazeev V.V., Sergeev S.M., Exact solution of the Faddeev-Volkov model, Phys. Lett. A 372 (2008), 1547-1550, arXiv:0706.3077.
  6. Bazhanov V.V., Sergeev S.M., A master solution of the quantum Yang-Baxter equation and classical discrete integrable equations, Adv. Theor. Math. Phys. 16 (2012), 65-95, arXiv:1006.0651.
  7. Beisert N., Ahn C., Alday L.F. et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012), 3-32, arXiv:1012.3982.
  8. Belitsky A.V., Braun V.M., Gorsky A.S., Korchemsky G.P., Integrability in QCD and beyond, Internat. J. Modern Phys. A 19 (2004), 4715-4788, arXiv:hep-th/0407232.
  9. Belitsky A.V., Derkachov S.E., Manashov A.N., Quantum mechanics of null polygonal Wilson loops, Nuclear Phys. B 882 (2014), 303-351, arXiv:1401.7307.
  10. Cavaglià A., Gromov N., Levkovich-Maslyuk F., Separation of variables and scalar products at any rank, J. High Energy Phys. 2019 (2019), no. 0, 052, 28 pages, arXiv:1907.03788.
  11. Derkachov S., Kazakov V., Olivucci E., Basso-Dixon correlators in two-dimensional fishnet CFT, J. High Energy Phys. 2019 (2019), no. 4, 032, 31 pages, arXiv:1811.10623.
  12. Derkachov S.E., Korchemsky G.P., Manashov A.N., Noncompact Heisenberg spin magnets from high-energy QCD. I. Baxter $Q$-operator and separation of variables, Nuclear Phys. B 617 (2001), 375-440, arXiv:hep-th/0107193.
  13. Derkachov S.E., Kozlowski K.K., Manashov A.N., On the separation of variables for the modular XXZ magnet and the lattice sinh-Gordon models, Ann. Henri Poincaré 20 (2019), 2623-2670, arXiv:1806.04487.
  14. Derkachov S.E., Manashov A.N., Iterative construction of eigenfunctions of the monodromy matrix for ${\rm SL}(2,{\mathbb C})$ magnet, J. Phys. A: Math. Theor. 47 (2014), 305204, 25 pages, arXiv:1401.7477.
  15. Derkachov S.E., Manashov A.N., Spin chains and Gustafson's integrals, J. Phys. A: Math. Theor. 50 (2017), 294006, 20 pages, arXiv:1611.09593.
  16. Derkachov S.E., Manashov A.N., Valinevich P.A., Gustafson integrals for ${\rm SL}(2,{\mathbb C})$ spin magnet, J. Phys. A: Math. Theor. 50 (2017), 294007, 12 pages, arXiv:1612.00727.
  17. Derkachov S.E., Manashov A.N., Valinevich P.A., ${\rm SL}(2,{\mathbb C})$ Gustafson integrals, SIGMA 14 (2018), 030, 16 pages, arXiv:1711.07822.
  18. Derkachov S.E., Spiridonov V.P., Yang-Baxter equation, parameter permutations, and the elliptic beta integral, Russian Math. Surveys 68 (2013), 1027-1072, arXiv:1205.3520.
  19. Dotsenko V.S., Fateev V.A., Four-point correlation functions and the operator algebra in $2$D conformal invariant theories with central charge $C\leq 1$, Nuclear Phys. B 251 (1985), 691-734.
  20. Faddeev L.D., How the algebraic Bethe ansatz works for integrable models, in Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 149-219, arXiv:hep-th/9605187.
  21. Fateev V.A., Litvinov A.V., Multipoint correlation functions in Liouville field theory and minimal Liouville gravity, Theoret. and Math. Phys. 154 (2008), 454-472, arXiv:0707.1664.
  22. Forrester P.J., Warnaar S.O., The importance of the Selberg integral, Bull. Amer. Math. Soc. (N.S.) 45 (2008), 489-534, arXiv:0710.3981.
  23. Gel'fand I.M., Graev M.I., Retakh V.S., Hypergeometric functions over an arbitrary field, Russian Math. Surveys 59 (2004), 831-905.
  24. Gromov N., Levkovich-Maslyuk F., New compact construction of eigenstates for supersymmetric spin chains, J. High Energy Phys. 2018 (2018), no. 9, 085, 23 pages, arXiv:1805.03927.
  25. Gromov N., Levkovich-Maslyuk F., Sizov G., New construction of eigenstates and separation of variables for ${\rm SU}(N)$ quantum spin chains, J. High Energy Phys. 2017 (2017), no. 9, 111, 40 pages, arXiv:1610.08032.
  26. Gustafson R.A., The Macdonald identities for affine root systems of classical type and hypergeometric series very-well-poised on semisimple Lie algebras, in Ramanujan International Symposium on Analysis (Pune, 1987), Macmillan of India, New Delhi, 1989, 185-224.
  27. Gustafson R.A., Some $q$-beta and Mellin-Barnes integrals with many parameters associated to the classical groups, SIAM J. Math. Anal. 23 (1992), 525-551.
  28. Gustafson R.A., Some $q$-beta and Mellin-Barnes integrals on compact Lie groups and Lie algebras, Trans. Amer. Math. Soc. 341 (1994), 69-119.
  29. Gustafson R.A., Some $q$-beta integrals on ${\rm SU}(n)$ and ${\rm Sp}(n)$ that generalize the Askey-Wilson and Nasrallah-Rahman integrals, SIAM J. Math. Anal. 25 (1994), 441-449.
  30. Ismagilov R.S., On Racah operators, Funct. Anal. Appl. 40 (2006), 222-224.
  31. Ismagilov R.S., On Racah operators for representations of the principal series of the group ${\rm SL}(2,{\mathbb C})$, Sb. Math. 198 (2007), 77-90.
  32. Kels A.P., A new solution of the star-triangle relation, J. Phys. A: Math. Theor. 47 (2014), 055203, 7 pages, arXiv:1302.3025.
  33. Kels A.P., New solutions of the star-triangle relation with discrete and continuous spin variables, J. Phys. A: Math. Theor. 48 (2015), 435201, 19 pages, arXiv:1504.07074.
  34. Kitanine N., Maillet J.M., Niccoli G., Terras V., The open XXX spin chain in the SoV framework: scalar product of separate states, J. Phys. A: Math. Theor. 50 (2017), 224001, 35 pages, arXiv:1606.06917.
  35. Kitanine N., Maillet J.M., Niccoli G., Terras V., The open XXZ spin chain in the SoV framework: scalar product of separate states, J. Phys. A: Math. Theor. 51 (2018), 485201, 46 pages, arXiv:1807.05197.
  36. Kozlowski K.K., Unitarity of the SoV transform for the Toda chain, Comm. Math. Phys. 334 (2015), 223-273, arXiv:1306.4967.
  37. Kulish P.P., Reshetikhin N.Y., Sklyanin E.K., Yang-Baxter equations and representation theory. I, Lett. Math. Phys. 5 (1981), 393-403.
  38. Kulish P.P., Sklyanin E.K., Quantum spectral transform method. Recent developments, in Integrable Quantum Field Theories (Tvärminne, 1981), Lecture Notes in Phys., Vol. 151, Springer, Berlin - New York, 1982, 61-119.
  39. Litvinov A.V., Lectures on conformal field theory, Lecture 6, available at http://www.mathnet.ru/rus/person27650.
  40. Maillet J.M., Niccoli G., On quantum separation of variables, J. Math. Phys. 59 (2018), 091417, 47 pages, arXiv:1807.11572.
  41. Milne S.C., A $q$-analog of hypergeometric series well-poised in ${\rm SU}(n)$ and invariant $G$-functions, Adv. Math. 58 (1985), 1-60.
  42. Milne S.C., A $q$-analog of the Gauss summation theorem for hypergeometric series in ${\rm U}(n)$, Adv. Math. 72 (1988), 59-131.
  43. Molchanov V.F., Neretin Yu.A., A pair of commuting hypergeometric operators on the complex plane and bispectrality, arXiv:1812.06766.
  44. Neretin Yu.A., An analog of the Dougall formula and of the de Branges-Wilson integral, arXiv:1812.07341.
  45. Neretin Yu.A., Barnes-Ismagilov integrals and hypergeometric functions of the complex field, arXiv:1910.10686.
  46. Pasquetti S., Sacchi M., 3d dualities from 2d free field correlators: recombination and rank stabilization, arXiv:1905.05807.
  47. Rains E.M., Spiridonov V.P., Determinants of elliptic hypergeometric integrals, Funct. Anal. Appl. 43 (2009), 297-311, arXiv:0712.4253.
  48. Rosengren H., Elliptic hypergeometric series on root systems, Adv. Math. 181 (2004), 417-447, arXiv:math.CA/0207046.
  49. Ryan P., Volin D., Separated variables and wave functions for rational $\mathfrak{gl}(N)$ spin chains in the companion twist frame, J. Math. Phys. 60 (2019), 032701, 23 pages, arXiv:1810.10996.
  50. Schlosser M.J., Hypergeometric and basic hypergeometric series and integrals associated with root systems, available at https://www.mat.univie.ac.at/~schlosse/AB-mbhs.html.
  51. Schrader G., Shapiro A., On $b$-Whittaker functions, arXiv:1806.00747.
  52. Sklyanin E.K., Boundary conditions for integrable quantum systems, J. Phys. A: Math. Gen. 21 (1988), 2375-2389.
  53. Sklyanin E.K., Quantum inverse scattering method. Selected topics, in Quantum Group and Quantum Integrable Systems, Nankai Lectures Math. Phys., World Sci. Publ., River Edge, NJ, 1992, 63-97, arXiv:hep-th/9211111.
  54. Sklyanin E.K., Takhtadzhyan L.A., Faddeev L.D., Quantum inverse problem method. I, Theoret. and Math. Phys. 40 (1979), 688-706.
  55. Spiridonov V.P., The endless beta integrals, Talk at the Workshop ''Elliptic Integrable Systems, Special Functions and Quantum Field Theory'' (June 16-20, 2019, Nordita, Stockholm, Sweden).
  56. Spiridonov V.P., On the elliptic beta function, Russian Math. Surveys 56 (2001), 185-186.
  57. Spiridonov V.P., Theta hypergeometric integrals, St. Petersburg Math. J. 15 (2003), 929-967, arXiv:math.CA/0303205.
  58. Spiridonov V.P., Short proofs of the elliptic beta integrals, Ramanujan J. 13 (2007), 265-283, arXiv:math.CA/0408369.
  59. Spiridonov V.P., Elliptic beta integrals and solvable models of statistical mechanics, in Algebraic aspects of Darboux transformations, quantum integrable systems and supersymmetric quantum mechanics, Contemp. Math., Vol. 563, Amer. Math. Soc., Providence, RI, 2012, 181-211, arXiv:1011.3798.
  60. Spiridonov V.P., Vartanov G.S., Elliptic hypergeometry of supersymmetric dualities, Comm. Math. Phys. 304 (2011), 797-874, arXiv:0910.5944.
  61. Spiridonov V.P., Warnaar S.O., Inversions of integral operators and elliptic beta integrals on root systems, Adv. Math. 207 (2006), 91-132, arXiv:math.CA/0411044.
  62. Stokman J.V., On $BC$ type basic hypergeometric orthogonal polynomials, Trans. Amer. Math. Soc. 352 (2000), 1527-1579, arXiv:q-alg/9707005.

Previous article  Next article  Contents of Volume 16 (2020)