Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 001, 26 pages      arXiv:1810.07919      https://doi.org/10.3842/SIGMA.2020.001

Aspects of Hecke Symmetry: Anomalies, Curves, and Chazy Equations

Sujay K. Ashok a, Dileep P. Jatkar b and Madhusudhan Raman c
a) Institute of Mathematical Sciences, Homi Bhabha National Institute (HBNI), IV Cross Road, C. I. T. Campus, Taramani, Chennai 600 113, India
b) Harish-Chandra Research Institute, Homi Bhabha National Institute (HBNI), Chhatnag Road, Jhunsi, Allahabad 211 019, India
c) Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai 400 005, India

Received May 06, 2019, in final form December 29, 2019; Published online January 01, 2020

Abstract
We study various relations governing quasi-automorphic forms associated to discrete subgroups of ${\rm SL}(2,\mathbb{R}) $ called Hecke groups. We show that the Eisenstein series associated to a Hecke group ${\rm H}(m)$ satisfy a set of $m$ coupled linear differential equations, which are natural analogues of the well-known Ramanujan identities for quasi-modular forms of ${\rm SL}(2,\mathbb{Z})$. Each Hecke group is then associated to a (hyper-)elliptic curve, whose coefficients are determined by an anomaly equation. For the $m=3$ and $4$ cases, the Ramanujan identities admit a natural geometric interpretation as a Gauss-Manin connection on the parameter space of the elliptic curve. The Ramanujan identities also allow us to associate a nonlinear differential equation of order $ m $ to each Hecke group. These equations are higher-order analogues of the Chazy equation, and we show that they are solved by the quasi-automorphic Eisenstein series $E_2^{(m)}$ associated to ${\rm H}(m) $ and its orbit under the Hecke group. We conclude by demonstrating that these nonlinear equations possess the Painlevé property.

Key words: Hecke groups; Chazy equations; Painlevé analysis.

pdf (516 kb)   tex (33 kb)  

References

  1. Ablowitz M.J., Ramani A., Segur H., A connection between nonlinear evolution equations and ordinary differential equations of $P$-type. II, J. Math. Phys. 21 (1980), 1006-1015.
  2. Ashok S.K., Billò M., Dell'Aquila E., Frau M., Lerda A., Moskovic M., Raman M., Chiral observables and S-duality in ${\mathcal N}=2^\star$ ${\rm U}(N)$ gauge theories, J. High Energy Phys. 2016 (2016), no. 11, 020, 37 pages, arXiv:1607.08327.
  3. Ashok S.K., Billò M., Dell'Aquila E., Frau M., Lerda A., Raman M., Modular anomaly equations and S-duality in ${\mathcal N}=2$ conformal SQCD, J. High Energy Phys. 2015 (2015), no. 10, 091, 31 pages, arXiv:1507.07476.
  4. Ashok S.K., Dell'Aquila E., Lerda A., Raman M., S-duality, triangle groups and modular anomalies in ${\mathcal N}=2$ SQCD, J. High Energy Phys. (2016), no. 4, 118, 52 pages, arXiv:1601.01827.
  5. Billò M., Frau M., Fucito F., Lerda A., Morales J.F., S-duality and the prepotential in ${\mathcal N}=2^\star$ theories (I): the ADE algebras, J. High Energy Phys. 2015 (2015), no. 11, 024, 32 pages, arXiv:1507.07709.
  6. Billò M., Frau M., Fucito F., Lerda A., Morales J.F., S-duality and the prepotential of ${\mathcal N}=2^\star$ theories (II): the non-simply laced algebras, J. High Energy Phys. (2015), no. 11, 026, 35 pages, arXiv:1507.08027.
  7. Broedel J., Duhr C., Dulat F., Tancredi L., Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism, J. High Energy Phys. 2018 (2018), no. 5, 093, 54 pages, arXiv:1712.07089.
  8. Chanda S., Guha P., Roychowdhury R., Bianchi-IX, Darboux-Halphen and Chazy-Ramanujan, Int. J. Geom. Methods Mod. Phys. 13 (2016), 1650042, 25 pages, arXiv:1512.01662.
  9. Clarkson P.A., Olver P.J., Symmetry and the Chazy equation, J. Differential Equations 124 (1996), 225-246.
  10. Conte R., Invariant Painlevé analysis of partial differential equations, Phys. Lett. A 140 (1989), 383-390.
  11. Conte R., Fordy A.P., Pickering A., A perturbative Painlevé approach to nonlinear differential equations, Phys. D 69 (1993), 33-58.
  12. Dabholkar A., Denef F., Moore G.W., Pioline B., Precision counting of small black holes, J. High Energy Phys. 2005 (2005), no. 10, 096, 90 pages, arXiv:hep-th/0507014.
  13. D'Hoker E., Phong D.H., Lectures on supersymmetric Yang-Mills theory and integrable systems, in Theoretical Physics at the End of the Twentieth Century (Banff, AB, 1999), CRM Ser. Math. Phys., Springer, New York, 2002, 1-125, arXiv:hep-th/9912271.
  14. Donagi R., Witten E., Supersymmetric Yang-Mills theory and integrable systems, Nuclear Phys. B 460 (1996), 299-334, arXiv:hep-th/9510101.
  15. Doran C.F., Gannon T., Movasati H., Shokri K.M., Automorphic forms for triangle groups, Commun. Number Theory Phys. 7 (2013), 689-737, arXiv:1307.4372.
  16. Dubrovin B., Geometry of $2$D topological field theories, in Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120-348, arXiv:hep-th/9407018.
  17. Fordy A., Pickering A., Analysing negative resonances in the Painlevé test, Phys. Lett. A 160 (1991), 347-354.
  18. Govindarajan S., Jatkar D.P., Chazy equation, half BPS states, and BKM algebras, unpublished.
  19. Harnad J., McKay J., Modular invariants and generalized Halphen systems, in SIDE III - Symmetries and Integrability of Difference Equations (Sabaudia, 1998), CRM Proc. Lecture Notes, Vol. 25, Amer. Math. Soc., Providence, RI, 2000, 181-195, arXiv:solv-int/9902012.
  20. Huang M.-X., Modular anomaly from holomorphic anomaly in mass deformed $\mathcal{N}=2$ superconformal field theories, Phys. Rev. D 87 (2013), 105010, 5 pages, arXiv:1302.6095.
  21. Jimbo M., Miwa T., Ueno K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau $-function, Phys. D 2 (1981), 306-352.
  22. Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448.
  23. Katz N.M., $p$-adic interpolation of real analytic Eisenstein series, Ann. of Math. 104 (1976), 459-571.
  24. Kowalevski S., Sur une propriété du système d'équations différentielles qui définit la rotation d'un corps solide autour d'un point fixe, Acta Math. 14 (1890), 81-93.
  25. Maier R.S., Nonlinear differential equations satisfied by certain classical modular forms, Manuscripta Math. 134 (2011), 1-42, arXiv:0807.1081.
  26. Movasati H., On Ramanujan relations between Eisenstein series, Manuscripta Math. 139 (2012), 495-514.
  27. Movasati H., Quasi-modular forms attached to elliptic curves, I, Ann. Math. Blaise Pascal 19 (2012), 307-377, arXiv:1110.3664.
  28. Painlevé P., Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme, Acta Math. 25 (1902), 1-85.
  29. Persson D., Volpato R., Fricke S-duality in CHL models, J. High Energy Phys. 2015 (2015), no. 12, 156, 55 pages, arXiv:1504.07260.
  30. Raman M., Aspects of Hecke symmetry I: Ramanujan identities and inversion formulas, arXiv:1803.10224.
  31. Ramanujan S., On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159-184.
  32. Shen L.-C., On Hecke groups, Schwarzian triangle functions and a class of hyper-elliptic functions, Ramanujan J. 39 (2016), 609-638.
  33. Takhtajan L.A., A simple example of modular forms as tau-functions for integrable equations, Theoret. and Math. Phys. 93 (1992), 1308-1317.
  34. Weiss J., Tabor M., Carnevale G., The Painlevé property for partial differential equations, J. Math. Phys. 24 (1983), 522-526.
  35. Zagier D., Elliptic modular forms and their applications, in The 1-2-3 of Modular Forms, Universitext, Springer, Berlin, 2008, 1-103.
  36. Zudilin W., The hypergeometric equation and Ramanujan functions, Ramanujan J. 7 (2003), 435-447.

Next article  Contents of Volume 16 (2020)