Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 099, 32 pages      arXiv:1908.11654      https://doi.org/10.3842/SIGMA.2019.099

Higher Rank Relations for the Askey-Wilson and $q$-Bannai-Ito Algebra

Hadewijch De Clercq
Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Belgium

Received September 03, 2019, in final form December 13, 2019; Published online December 19, 2019

Abstract
The higher rank Askey-Wilson algebra was recently constructed in the $n$-fold tensor product of $U_q(\mathfrak{sl}_2)$. In this paper we prove a class of identities inside this algebra, which generalize the defining relations of the rank one Askey-Wilson algebra. We extend the known construction algorithm by several equivalent methods, using a novel coaction. These allow to simplify calculations significantly. At the same time, this provides a proof of the corresponding relations for the higher rank $q$-Bannai-Ito algebra.

Key words: Askey-Wilson algebra; Bannai-Ito algebra.

pdf (581 kb)   tex (34 kb)  

References

  1. Abrams L., Weibel C., Cotensor products of modules, Trans. Amer. Math. Soc. 354 (2002), 2173-2185, arXiv:math.RA/9912211.
  2. Baseilhac P., Deformed Dolan-Grady relations in quantum integrable models, Nuclear Phys. B 709 (2005), 491-521, arXiv:hep-th/0404149.
  3. Baseilhac P., An integrable structure related with tridiagonal algebras, Nuclear Phys. B 705 (2005), 605-619, arXiv:math-ph/0408025.
  4. Baseilhac P., Martin X., Vinet L., Zhedanov A., Little and big $q$-Jacobi polynomials and the Askey-Wilson algebra, Ramanujan J., to appear, arXiv:1806.02656.
  5. Cherednik I., Double affine Hecke algebras and Macdonald's conjectures, Ann. of Math. 141 (1995), 191-216.
  6. Crampé N., Gaboriaud J., Vinet L., Zaimi M., Revisiting the Askey-Wilson algebra with the universal $R$-matrix of $U_q(\mathfrak{sl}(2))$, arXiv:1908.04806.
  7. De Bie H., De Clercq H., The $q$-Bannai-Ito algebra and multivariate $(-q)$-Racah and Bannai-Ito polynomials, arXiv:1902.07883.
  8. De Bie H., De Clercq H., van de Vijver W., The higher rank $q$-deformed Bannai-Ito and Askey-Wilson algebra, Comm. Math. Phys.,to appear, arXiv:1805.06642.
  9. De Bie H., Genest V.X., Lemay J.-M., Vinet L., A superintegrable model with reflections on $S^{n-1}$ and the higher rank Bannai-Ito algebra, J. Phys. A: Math. Theor. 50 (2017), 195202, 10 pages, arXiv:1601.07642.
  10. De Bie H., Genest V.X., van de Vijver W., Vinet L., A higher rank Racah algebra and the ${\mathbb Z}^n_2$ Laplace-Dunkl operator, J. Phys. A: Math. Theor. 51 (2018), 025203, 20 pages, arXiv:1610.02638.
  11. De Bie H., Genest V.X., Vinet L., The ${\mathbb Z}_2^n$ Dirac-Dunkl operator and a higher rank Bannai-Ito algebra, Adv. Math. 303 (2016), 390-414, arXiv:1511.02177.
  12. Dunkl C.F., Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), 167-183.
  13. Frappat L., Gaboriaud J., Ragoucy E., Vinet L., The $q$-Higgs and Askey-Wilson algebras, Nuclear Phys. B 944 (2019), 114632, 13 pages, arXiv:1903.04616.
  14. Frappat L., Gaboriaud J., Ragoucy E., Vinet L., The dual pair $(U_q(\mathfrak{su}(1,1)),\mathfrak{o}_{q^{1/2}}(2n))$, $q$-oscillators and Askey-Wilson algebras, arXiv:1908.04277.
  15. Genest V.X., Vinet L., Zhedanov A., The quantum superalgebra ${\mathfrak{osp}}_q(1|2)$ and a $q$-generalization of the Bannai-Ito polynomials, Comm. Math. Phys. 344 (2016), 465-481, arXiv:1501.05602.
  16. Granovskii Ya.I., Zhedanov A.S., Hidden symmetry of the Racah and Clebsch-Gordan problems for the quantum algebra $\mathfrak{sl}_q(2)$, J. Group Theory in Physics 1 (1993), 161-171, arXiv:hep-th/9304138.
  17. Granovskii Ya.I., Zhedanov A.S., Linear covariance algebra for ${\rm SL}_q(2)$, J. Phys. A: Math. Gen. 26 (1993), L357-L359.
  18. Huang H.-W., Finite-dimensional irreducible modules of the universal Askey-Wilson algebra, Comm. Math. Phys. 340 (2015), 959-984, arXiv:1210.1740.
  19. Huang H.-W., An embedding of the universal Askey-Wilson algebra into $U_q(\mathfrak{sl}_2)\otimes U_q(\mathfrak{sl}_2)\otimes U_q(\mathfrak{sl}_2)$, Nuclear Phys. B 922 (2017), 401-434, arXiv:1611.02130.
  20. Iliev P., Bispectral commuting difference operators for multivariable Askey-Wilson polynomials, Trans. Amer. Math. Soc. 363 (2011), 1577-1598, arXiv:0801.4939.
  21. Ito T., Terwilliger P., Double affine Hecke algebras of rank 1 and the ${\mathbb Z}_3$-symmetric Askey-Wilson relations, SIGMA 6 (2010), 065, 9 pages, arXiv:1001.2764.
  22. Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.
  23. Koornwinder T.H., Zhedanov's algebra ${\rm AW}(3)$ and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra, SIGMA 4 (2008), 052, 17 pages, arXiv:0711.2320.
  24. Koornwinder T.H., Mazzocco M., Dualities in the $q$-Askey scheme and degenerate DAHA, Stud. Appl. Math. 141 (2018), 424-473, arXiv:1803.02775.
  25. Nomura K., Tridiagonal pairs and the Askey-Wilson relations, Linear Algebra Appl. 397 (2005), 99-106.
  26. Terwilliger P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), 149-203, arXiv:math.RA/0406555.
  27. Terwilliger P., Two relations that generalize the $q$-Serre relations and the Dolan-Grady relations, in Physics and Combinatorics 1999 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, 377-398, arXiv:math.QA/0307016.
  28. Terwilliger P., Leonard pairs and the $q$-Racah polynomials, Linear Algebra Appl. 387 (2004), 235-276, arXiv:math.QA/0306301.
  29. Terwilliger P., The universal Askey-Wilson algebra, SIGMA 7 (2011), 069, 24 pages, arXiv:1104.2813.
  30. Terwilliger P., The $q$-Onsager algebra and the universal Askey-Wilson algebra, SIGMA 14 (2018), 044, 18 pages, arXiv:1801.06083.
  31. Terwilliger P., Vidunas R., Leonard pairs and the Askey-Wilson relations, J. Algebra Appl. 3 (2004), 411-426, arXiv:math.QA/0305356.
  32. Vidunas R., Askey-Wilson relations and Leonard pairs, Discrete Math. 308 (2008), 479-495, arXiv:math.QA/0511509.
  33. Zhedanov A., ''Hidden symmetry'' of Askey-Wilson polynomials, Theoret. and Math. Phys. 89 (1991), 1146-1157.

Previous article  Next article  Contents of Volume 15 (2019)