|
SIGMA 15 (2019), 097, 21 pages arXiv:1912.05740
https://doi.org/10.3842/SIGMA.2019.097
Contribution to the Special Issue on Algebra, Topology, and Dynamics in Interaction in honor of Dmitry Fuchs
Fun Problems in Geometry and Beyond
Boris Khesin a and Serge Tabachnikov b
a) Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada
b) Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
Received November 17, 2019; Published online December 11, 2019
Abstract
We discuss fun problems, vaguely related to notions and theorems of a course in differential geometry. This paper can be regarded as a weekend ''treasure chest'' supplementing the course weekday lecture notes. The problems and solutions are not original, while their relation to the course might be so.
Key words: clocks; spot it!; hunters; parking; frames; tangents; algebra; geometry.
pdf (1931 kb)
tex (1746 kb)
References
- Akopyan A., Avvakumov S., Any cyclic quadrilateral can be inscribed in any closed convex smooth curve, Forum Math. Sigma 6 (2018), e7, 9 pages, arXiv:1712.10205.
- Akopyan A.V., Bobenko A.I., Incircular nets and confocal conics, Trans. Amer. Math. Soc. 370 (2018), 2825-2854, arXiv:1602.04637.
- Arnold V.I., Arnold's problems, Springer-Verlag, Berlin, 2004.
- Arnold V.I., Lobachevsky triangle altitudes theorem as the Jacobi identity in the Lie algebra of quadratic forms on symplectic plane, J. Geom. Phys. 53 (2005), 421-427.
- Arnold V.I., Mathematical understanding of nature. Essays on amazing physical phenomena and their understanding by mathematicians, Amer. Math. Soc., Providence, RI, 2014.
- Arnold V.I., Problems for children from 5 to 15, 2014, available at https://imaginary.org/background-material/school-taskbook-from-5-to-15.
- Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of differentiable maps, Vol. I. The classification of critical points, caustics and wave fronts, Monographs in Mathematics, Vol. 82, Birkhäuser Boston, Inc., Boston, MA, 1985.
- Baritompa B., Löwen R., Polster B., Ross M., Mathematical table-turning revisited, Math. Intelligencer 29 (2007), 49-58.
- Demaine E.D., Demaine M.L., Minsky Y.N., Mitchell J.S.B., Rivest R.L., Patraşcu M., Picture-hanging puzzles, Theory Comput. Syst. 54 (2014), 531-550, arXiv:1203.3602.
- Fenn R., The table theorem, Bull. London Math. Soc. 2 (1970), 73-76.
- Fuchs D., Tabachnikov S., Mathematical omnibus. Thirty lectures on classic mathematics, Amer. Math. Soc., Providence, RI, 2007.
- Fuchs D., Tabachnikov S., Self-dual polygons and self-dual curves, Funct. Anal. Other Math. 2 (2009), 203-220, arXiv:0707.1048.
- Glutsyuk A., Izmestiev I., Tabachnikov S., Four equivalent properties of integrable billiards, Israel J. Math., to appear, arXiv:1909.09028.
- Gray A., Tubes, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1990.
- Halpern B., Weaver C., Inverting a cylinder through isometric immersions and isometric embeddings, Trans. Amer. Math. Soc. 230 (1977), 41-70.
- Izmestiev I., Tabachnikov S., Ivory's theorem revisited, J. Integrable Syst. 2 (2017), xyx006, 36 pages, arXiv:1610.01384.
- Izosimov A., The pentagram map, Poncelet polygons, and commuting difference operators, arXiv:1906.10749.
- Khovanova T., Martin Gardner's mistake, College Math. J. 43 (2012), 20-24, arXiv:1102.0173, see also http://blog.tanyakhovanova.com.
- Kronheimer E.H., Kronheimer P.B., The tripos problem, J. London Math. Soc. 24 (1981), 182-192.
- Livesay G.R., On a theorem of F.J. Dyson, Ann. of Math. 59 (1954), 227-229.
- Matschke B., A survey on the square peg problem, Notices Amer. Math. Soc. 61 (2014), 346-352.
- Meyerson M.D., Remarks on Fenn's ''the table theorem'' and Zaks' ''the chair theorem'', Pacific J. Math. 110 (1984), 167-169.
- Michor P.W., Topics in differential geometry, Graduate Studies in Mathematics, Vol. 93, Amer. Math. Soc., Providence, RI, 2008.
- Raphaël E., di Meglio J.-M., Berger M., Calabi E., Convex particles at interfaces, J. Phys. I France 2 (1992), 571-579.
- Santaló L.A., Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Vol. 1, Addison-Wesley Publishing Co., Reading, Mass. - London - Amsterdam, 1976.
- Schwartz R., The pentagram map, Experiment. Math. 1 (1992), 71-81.
- Schwartz R., The Poncelet grid, Adv. Geom. 7 (2007), 157-175.
- Schwartz R., Tabachnikov S., Elementary surprises in projective geometry, Math. Intelligencer 32 (2010), 31-34, arXiv:0910.1952.
- Tabachnikov S., Geometry and billiards, Student Mathematical Library, Vol. 30, Amer. Math. Soc., Providence, RI, 2005.
- Tabachnikov S., The (un)equal tangents problem, Amer. Math. Monthly 119 (2012), 398-405, arXiv:1102.5577.
- Tabachnikov S., Kasner meets Poncelet, Math. Intelligencer 41 (2019), 56-59, arXiv:1707.09267.
- Tabachnikov S., Dogru F., Dual billiards, Math. Intelligencer 27 (2005), 18-25.
|
|