|
SIGMA 15 (2019), 095, 11 pages arXiv:1901.07532
https://doi.org/10.3842/SIGMA.2019.095
Contribution to the Special Issue on Algebra, Topology, and Dynamics in Interaction in honor of Dmitry Fuchs
Cohomology of Restricted Filiform Lie Algebras ${\mathfrak m}_2^\lambda(p)$
Tyler J. Evans a and Alice Fialowski bc
a) Department of Mathematics, Humboldt State University, Arcata, CA 95521, USA
b) Institute of Mathematics, University of Pécs, Pécs, Hungary
c) Institute of Mathematics Eötvös Loránd University, Budapest, Hungary
Received August 19, 2019, in final form November 24, 2019; Published online December 01, 2019
Abstract
For the $p$-dimensional filiform Lie algebra ${\mathfrak m}_2(p)$ over a field ${\mathbb F}$ of prime characteristic $p\ge 5$ with nonzero Lie brackets $[e_1,e_i] = e_{i+1}$ for $1$<$i$<$p$ and $[e_2,e_i]=e_{i+2}$ for $2$<$i$<$p-1$, we show that there is a family ${\mathfrak m}_2^{\lambda}(p)$ of restricted Lie algebra structures parameterized by elements $\lambda \in {\mathbb F}^p$. We explicitly describe bases for the ordinary and restricted 1- and 2-cohomology spaces with trivial coefficients, and give formulas for the bracket and $[p]$-operations in the corresponding restricted one-dimensional central extensions.
Key words: restricted Lie algebra; central extension; cohomology; filiform Lie algebra.
pdf (389 kb)
tex (15 kb)
References
- Caranti A., Mattarei S., Newman M.F., Graded Lie algebras of maximal class, Trans. Amer. Math. Soc. 349 (1997), 4021-4051.
- Caranti A., Newman M.F., Graded Lie algebras of maximal class. II, J. Algebra 229 (2000), 750-784, arXiv:math.RA/9906160.
- Chevalley C., Eilenberg S., Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124.
- Evans T.J., Fialowski A., Restricted one-dimensional central extensions of restricted simple Lie algebras, Linear Algebra Appl. 513 (2017), 96-102, arXiv:1506.09025.
- Evans T.J., Fialowski A., Restricted one-dimensional central extensions of the restricted filiform Lie algebras ${\mathfrak m}_0^\lambda(p)$, Linear Algebra Appl. 565 (2019), 244-257, arXiv:1801.08178.
- Evans T.J., Fialowski A., Penkava M., Restricted cohomology of modular Witt algebras, Proc. Amer. Math. Soc. 144 (2016), 1877-1886, arXiv:1502.04531.
- Evans T.J., Fuchs D., A complex for the cohomology of restricted Lie algebras, J. Fixed Point Theory Appl. 3 (2008), 159-179.
- Feldvoss J., On the cohomology of restricted Lie algebras, Comm. Algebra 19 (1991), 2865-2906.
- Fialowski A., On the classification of graded Lie algebras with two generators, Moscow Univ. Math. Bull. 38 (1983), 76-79.
- Fuks D.B., Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986.
- Hochschild G., Cohomology of restricted Lie algebras, Amer. J. Math. 76 (1954), 555-580.
- Jacobson N., Lie algebras, Interscience Tracts in Pure and Applied Mathematics, Vol. 10, Interscience Publishers, New York - London, 1962.
- Jurman G., Graded Lie algebras of maximal class. III, J. Algebra 284 (2005), 435-461.
- Millionschikov D.V., Graded filiform Lie algebras and symplectic nilmanifolds, in Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, Vol. 212, Amer. Math. Soc., Providence, RI, 2004, 259-279, arXiv:math.RA/0205042.
- Strade H., Farnsteiner R., Modular Lie algebras and their representations, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 116, Marcel Dekker, Inc., New York, 1988.
|
|