|
SIGMA 15 (2019), 094, 18 pages arXiv:1906.08388
https://doi.org/10.3842/SIGMA.2019.094
Bi-Hamiltonian Systems in (2+1) and Higher Dimensions Defined by Novikov Algebras
Błażej M. Szablikowski
Faculty of Physics, Division of Mathematical Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
Received June 21, 2019, in final form November 21, 2019; Published online November 29, 2019
Abstract
The results from the article [Strachan I.A.B., Szablikowski B.M., Stud. Appl. Math. 133 (2014), 84-117] are extended over consideration of central extensions allowing the introducing of additional independent variables. Algebraic conditions associated to the first-order central extension with respect to additional independent variables are derived. As result $(2+1)$- and, in principle, higher-dimensional multicomponent bi-Hamiltonian systems are constructed. Necessary classification of the central extensions for low-dimensional Novikov algebras is performed and the theory is illustrated by significant $(2+1)$- and $(3+1)$-dimensional examples.
Key words: Novikov algebras; $(2+1)$- and $(3+1)$-dimensional integrable systems; bi-Hamiltonian structures; central extensions.
pdf (433 kb)
tex (20 kb)
References
- Arnold V.I., Khesin B.A., Topological methods in hydrodynamics, Applied Mathematical Sciences, Vol. 125, Springer-Verlag, New York, 1998.
- Bai C., Meng D., The classification of Novikov algebras in low dimensions, J. Phys. A: Math. Gen. 34 (2001), 1581-1594.
- Bai C., Meng D., Transitive Novikov algebras on four-dimensional nilpotent Lie algebras, Internat. J. Theoret. Phys. 40 (2001), 1761-1768.
- Balinskiǐ A.A., Novikov S.P., Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras, Soviet Math. Dokl. 32 (1985), 228-231.
- Błaszak M., Multi-Hamiltonian theory of dynamical systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1998.
- Błaszak M., Sergyeyev A., Contact Lax pairs and associated $(3+1)$-dimensional integrable dispersionless systems, in Nonlinear Systems and Their Remarkable Mathematical Structures, Vol. 2, Editors N. Euler, M.C. Nucci, Chapman and Hall/CRC, to appear, arXiv:1901.05181.
- Burde D., de Graaf W., Classification of Novikov algebras, Appl. Algebra Engrg. Comm. Comput. 24 (2013), 1-15, arXiv:1106.5954.
- Camassa R., Holm D.D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), 1661-1664, arXiv:patt-sol/9305002.
- Dubrovin B.A., Novikov S.P., Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubov-Whitham averaging method, Soviet Math. Dokl. 27 (1983), 665-669.
- Dubrovin B.A., Novikov S.P., On Poisson brackets of hydrodynamic type, Soviet Math. Dokl. 30 (1984), 651-654.
- Ferapontov E.V., Lorenzoni P., Savoldi A., Hamiltonian operators of Dubrovin-Novikov type in 2D, Lett. Math. Phys. 105 (2015), 341-377, arXiv:1312.0475.
- Gel'fand I.M., Dorfman I.Ya., Hamiltonian operators and algebraic structures related to them, Funct. Anal. Appl. 13 (1979), 248-262.
- Khesin B., Wendt R., The geometry of infinite-dimensional groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Vol. 51, Springer-Verlag, Berlin, 2009.
- Mokhov O.I., Dubrovin-Novikov type Poisson brackets (DN-brackets), Funct. Anal. Appl. 22 (1988), 336-338.
- Mokhov O.I., The classification of nonsingular multidimensional Dubrovin-Novikov brackets, Funct. Anal. Appl. 42 (2008), 33-44, arXiv:math.DG/0611785.
- Olver P.J., Applications of Lie groups to differential equations, 2nd ed., Graduate Texts in Mathematics, Vol. 107, Springer-Verlag, New York, 1993.
- Ovsienko V., Roger C., Looped cotangent Virasoro algebra and non-linear integrable systems in dimension $2+1$, Comm. Math. Phys. 273 (2007), 357-378, arXiv:math-ph/0602043.
- Sergyeyev A., Szablikowski B.M., Central extensions of cotangent universal hierarchy: $(2+1)$-dimensional bi-Hamiltonian systems, Phys. Lett. A 372 (2008), 7016-7023, arXiv:0807.1294.
- Strachan I.A.B., Darboux coordinates for Hamiltonian structures defined by Novikov algebras, arXiv:1804.07073.
- Strachan I.A.B., A construction of multidimensional Dubrovin-Novikov brackets, J. Nonlinear Math. Phys. 26 (2019), 202-213, arXiv:1806.10382.
- Strachan I.A.B., Szablikowski B.M., Novikov algebras and a classification of multicomponent Camassa-Holm equations, Stud. Appl. Math. 133 (2014), 84-117, arXiv:1309.3188.
- Strachan I.A.B., Zuo D., Frobenius manifolds and Frobenius algebra-valued integrable systems, Lett. Math. Phys. 107 (2017), 997-1026, arXiv:1403.0021.
|
|