Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 091, 10 pages      arXiv:1909.13262      https://doi.org/10.3842/SIGMA.2019.091
Contribution to the Special Issue on Algebra, Topology, and Dynamics in Interaction in honor of Dmitry Fuchs

Locally Nilpotent Derivations of Free Algebra of Rank Two

Vesselin Drensky a and Leonid Makar-Limanov bc
a) Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
b) Department of Mathematics, Wayne State University Detroit, MI 48202, USA
c) Department of Mathematics, The Weizmann Institute of Science, Rehovot 7610001, Israel

Received October 01, 2019, in final form November 13, 2019; Published online November 18, 2019

Abstract
In commutative algebra, if $\delta$ is a locally nilpotent derivation of the polynomial algebra $K[x_1,\ldots,x_d]$ over a field $K$ of characteristic 0 and $w$ is a nonzero element of the kernel of $\delta$, then $\Delta=w\delta$ is also a locally nilpotent derivation with the same kernel as $\delta$. In this paper we prove that the locally nilpotent derivation $\Delta$ of the free associative algebra $K\langle X,Y\rangle$ is determined up to a multiplicative constant by its kernel. We show also that the kernel of $\Delta$ is a free associative algebra and give an explicit set of its free generators.

Key words: free associative algebras; locally nilpotent derivations; algebras of constants.

pdf (369 kb)   tex (18 kb)  

References

  1. Bass H., A nontriangular action of ${\mathbb G}_{a}$ on ${\mathbb A}^{3}$, J. Pure Appl. Algebra 33 (1984), 1-5.
  2. Cohn P.M., Free rings and their relations, 2nd ed., London Mathematical Society Monographs, Vol. 19, Academic Press, Inc., London, 1985.
  3. Czerniakiewicz A.J., Automorphisms of a free associative algebra of rank $2$. I, Trans. Amer. Math. Soc. 160 (1971), 393-401.
  4. Czerniakiewicz A.J., Automorphisms of a free associative algebra of rank $2$. II, Trans. Amer. Math. Soc. 171 (1972), 309-315.
  5. de W. Jooste T., Primitive derivations in free associative algebras, Math. Z. 164 (1978), 15-23.
  6. Drensky V., Free algebras and PI-algebras. Graduate course in algebra, Springer-Verlag, Singapore, 2000.
  7. Drensky V., Gupta C.K., Constants of Weitzenböck derivations and invariants of unipotent transformations acting on relatively free algebras, J. Algebra 292 (2005), 393-428, arXiv:math.RA/0412399.
  8. Falk G., Konstanzelemente in Ringen mit Differentiation, Math. Ann. 124 (1952), 182-186.
  9. Freudenburg G., A survey of counterexamples to Hilbert's fourteenth problem, Serdica Math. J. 27 (2001), 171-192.
  10. Freudenburg G., Algebraic theory of locally nilpotent derivations, Encyclopaedia of Mathematical Sciences, Vol. 136, Springer-Verlag, Berlin, 2006.
  11. Jung H.W.E., Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161-174.
  12. Kharchenko V.K., Algebras of invariants of free algebras, Algebra Logic 17 (1978), 316-321, translation of Algebra i Logika 17 (1978), 478-487.
  13. Lane D.R., Free algebras of rank two and their automorphisms, Ph.D. Thesis, Bedford College, London, 1976.
  14. Makar-Limanov L., Automorphisms of a free algebra with two generators, Funct. Anal. Appl. 4 (1970), 262-264, translation of Funk. Analiz i ego Prilozh. 4 (1970), no. 3, 107-108.
  15. Makar-Limanov L., Locally nilpotent derivations, a new ring invariant and applications,Lecture notes, available at http://www.math.wayne.edu/~lml/lmlnotes.pdf.
  16. Makar-Limanov L., Turusbekova U., Umirbaev U., Automorphisms and derivations of free Poisson algebras in two variables, J. Algebra 322 (2009), 3318-3330, arXiv:0708.1148.
  17. Nagata M., On automorphism group of $k[x,y]$, Lectures in Math., Vol. 5, Kyoto University, Kinokuniya Book-Store Co., Ltd., Tokyo, 1972.
  18. Nowicki A., Polynomial derivations and their rings of constants, Uniwersytet Mikołaja Kopernika, Toruń, 1994.
  19. Nowicki A., The fourteenth problem of Hilbert for polynomial derivations, in Differential Galois Theory (Będlewo, 2001), Banach Center Publ., Vol. 58, Polish Acad. Sci. Inst. Math., Warsaw, 2002, 177-188.
  20. Rentschler R., Opérations du groupe additif sur le plan affine, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), 384-387.
  21. Serre J.-P., Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, translation of Arbres, amalgames, ${\rm SL}_2$, Astérisque, Vol. 46, Société Mathématique de France, Paris, 1977.
  22. Seshadri C.S., On a theorem of Weitzenböck in invariant theory, J. Math. Kyoto Univ. 1 (1962), 403-409.
  23. Shestakov I.P., Umirbaev U.U., Poisson brackets and two-generated subalgebras of rings of polynomials, J. Amer. Math. Soc. 17 (2004), 181-196.
  24. Shestakov I.P., Umirbaev U.U., The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc. 17 (2004), 197-227.
  25. Smith M.K., Stably tame automorphisms, J. Pure Appl. Algebra 58 (1989), 209-212.
  26. Specht W., Gesetze in Ringen. I, Math. Z. 52 (1950), 557-589.
  27. Tyc A., An elementary proof of the Weitzenböck theorem, Colloq. Math. 78 (1998), 123-132.
  28. Umirbaev U.U., The Anick automorphism of free associative algebras, J. Reine Angew. Math. 605 (2007), 165-178, arXiv:math.RA/0607029.
  29. van den Essen A., Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, Vol. 190, Birkhäuser Verlag, Basel, 2000.
  30. van der Kulk W., On polynomial rings in two variables, Nieuw Arch. Wiskunde 1 (1953), 33-41.
  31. Weitzenböck R., Über die Invarianten von linearen Gruppen, Acta Math. 58 (1932), 231-293.

Previous article  Next article  Contents of Volume 15 (2019)