|
SIGMA 15 (2019), 090, 15 pages arXiv:1907.06113
https://doi.org/10.3842/SIGMA.2019.090
Quasi-Polynomials and the Singular $[Q,R]=0$ Theorem
Yiannis Loizides
Pennsylvania State University, USA
Received July 16, 2019, in final form November 13, 2019; Published online November 18, 2019
Abstract
In this short note we revisit the 'shift-desingularization' version of the $[Q,R]=0$ theorem for possibly singular symplectic quotients. We take as starting point an elegant proof due to Szenes-Vergne of the quasi-polynomial behavior of the multiplicity as a function of the tensor power of the prequantum line bundle. We use the Berline-Vergne index formula and the stationary phase expansion to compute the quasi-polynomial, adapting an early approach of Meinrenken.
Key words: symplectic geometry; Hamiltonian $G$-spaces; symplectic reduction; geometric quantization; quasi-polynomials; stationary phase.
pdf (417 kb)
tex (23 kb)
References
- Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, Vol. 298, Springer-Verlag, Berlin, 1992.
- Canas da Silva A.M.L.G., Multiplicity formulas for orbifolds, Ph.D. Thesis, Massachusetts Institute of Technology, 1996.
- Guillemin V., Sternberg S., Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), 515-538.
- Hörmander L., The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Vol. 256, Springer-Verlag, Berlin, 1990.
- Lerman E., Meinrenken E., Tolman S., Woodward C., Nonabelian convexity by symplectic cuts, Topology 37 (1998), 245-259.
- Loizides Y., Meinrenken E., The decomposition formula for Verlinde sums, arXiv:1803.06684.
- Meinrenken E., On Riemann-Roch formulas for multiplicities, J. Amer. Math. Soc. 9 (1996), 373-389, arXiv:alg-geom/9405014.
- Meinrenken E., Symplectic surgery and the ${\rm Spin}^c$-Dirac operator, Adv. Math. 134 (1998), 240-277, arXiv:dg-ga/9504002.
- Meinrenken E., Equivariant cohomology and the Cartan model, in Encyclopedia of Mathematical Physics, Elsevier, 2006, 242-250.
- Meinrenken E., Sjamaar R., Singular reduction and quantization, Topology 38 (1999), 699-762, arXiv:dg-ga/9707023.
- Paradan P.-E., Localization of the Riemann-Roch character, J. Funct. Anal. 187 (2001), 442-509, arXiv:math.DG/9911024.
- Paradan P.-E., Wall-crossing formulas in Hamiltonian geometry, in Geometric Aspects of Analysis and Mechanics, Progr. Math., Vol. 292, Birkhäuser/Springer, New York, 2011, 295-343, arXiv:math.SG/0411306.
- Paradan P.-E., Vergne M., Witten non abelian localization for equivariant K-theory, and the $[Q,R]=0$ theorem, Mem. Amer. Math. Soc. 261 (2019), 71 pages, arXiv:1504.07502.
- Szenes A., Vergne M., $[Q,R]=0$ and Kostant partition functions, Enseign. Math. 63 (2017), 471-516, arXiv:1006.4149.
- Tian Y., Zhang W., An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg, Invent. Math. 132 (1998), 229-259.
|
|