Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 090, 15 pages      arXiv:1907.06113      https://doi.org/10.3842/SIGMA.2019.090

Quasi-Polynomials and the Singular $[Q,R]=0$ Theorem

Yiannis Loizides
Pennsylvania State University, USA

Received July 16, 2019, in final form November 13, 2019; Published online November 18, 2019

Abstract
In this short note we revisit the 'shift-desingularization' version of the $[Q,R]=0$ theorem for possibly singular symplectic quotients. We take as starting point an elegant proof due to Szenes-Vergne of the quasi-polynomial behavior of the multiplicity as a function of the tensor power of the prequantum line bundle. We use the Berline-Vergne index formula and the stationary phase expansion to compute the quasi-polynomial, adapting an early approach of Meinrenken.

Key words: symplectic geometry; Hamiltonian $G$-spaces; symplectic reduction; geometric quantization; quasi-polynomials; stationary phase.

pdf (417 kb)   tex (23 kb)  

References

  1. Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, Vol. 298, Springer-Verlag, Berlin, 1992.
  2. Canas da Silva A.M.L.G., Multiplicity formulas for orbifolds, Ph.D. Thesis, Massachusetts Institute of Technology, 1996.
  3. Guillemin V., Sternberg S., Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), 515-538.
  4. Hörmander L., The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Vol. 256, Springer-Verlag, Berlin, 1990.
  5. Lerman E., Meinrenken E., Tolman S., Woodward C., Nonabelian convexity by symplectic cuts, Topology 37 (1998), 245-259.
  6. Loizides Y., Meinrenken E., The decomposition formula for Verlinde sums, arXiv:1803.06684.
  7. Meinrenken E., On Riemann-Roch formulas for multiplicities, J. Amer. Math. Soc. 9 (1996), 373-389, arXiv:alg-geom/9405014.
  8. Meinrenken E., Symplectic surgery and the ${\rm Spin}^c$-Dirac operator, Adv. Math. 134 (1998), 240-277, arXiv:dg-ga/9504002.
  9. Meinrenken E., Equivariant cohomology and the Cartan model, in Encyclopedia of Mathematical Physics, Elsevier, 2006, 242-250.
  10. Meinrenken E., Sjamaar R., Singular reduction and quantization, Topology 38 (1999), 699-762, arXiv:dg-ga/9707023.
  11. Paradan P.-E., Localization of the Riemann-Roch character, J. Funct. Anal. 187 (2001), 442-509, arXiv:math.DG/9911024.
  12. Paradan P.-E., Wall-crossing formulas in Hamiltonian geometry, in Geometric Aspects of Analysis and Mechanics, Progr. Math., Vol. 292, Birkhäuser/Springer, New York, 2011, 295-343, arXiv:math.SG/0411306.
  13. Paradan P.-E., Vergne M., Witten non abelian localization for equivariant K-theory, and the $[Q,R]=0$ theorem, Mem. Amer. Math. Soc. 261 (2019), 71 pages, arXiv:1504.07502.
  14. Szenes A., Vergne M., $[Q,R]=0$ and Kostant partition functions, Enseign. Math. 63 (2017), 471-516, arXiv:1006.4149.
  15. Tian Y., Zhang W., An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg, Invent. Math. 132 (1998), 229-259.

Previous article  Next article  Contents of Volume 15 (2019)