Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 088, 10 pages      arXiv:1705.07625      https://doi.org/10.3842/SIGMA.2019.088
Contribution to the Special Issue on Algebraic Methods in Dynamical Systems

Variations for Some Painlevé Equations

Primitivo B. Acosta-Humánez ab, Marius van der Put c and Jaap Top c
a) School of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla, Colombia
b) Instituto Superior de Formación Docente Salomé Ureña - ISFODOSU, Santiago de los Caballeros, Dominican Republic
c) Bernoulli Institute, University of Groningen, Groningen, The Netherlands

Received November 01, 2018, in final form November 05, 2019; Published online November 09, 2019

Abstract
This paper first discusses irreducibility of a Painlevé equation $P$. We explain how the Painlevé property is helpful for the computation of special classical and algebraic solutions. As in a paper of Morales-Ruiz we associate an autonomous Hamiltonian $\mathbb{H}$ to a Painlevé equation $P$. Complete integrability of $\mathbb{H}$ is shown to imply that all solutions to $P$ are classical (which includes algebraic), so in particular $P$ is solvable by ''quadratures''. Next, we show that the variational equation of $P$ at a given algebraic solution coincides with the normal variational equation of $\mathbb{H}$ at the corresponding solution. Finally, we test the Morales-Ramis theorem in all cases $P_{2}$ to $P_{5}$ where algebraic solutions are present, by showing how our results lead to a quick computation of the component of the identity of the differential Galois group for the first two variational equations. As expected there are no cases where this group is commutative.

Key words: Hamiltonian systems; variational equations; Painlevé equations; differential Galois groups.

pdf (405 kb)   tex (20 kb)  

References

  1. Acosta-Humánez P.B., Nonautonomous Hamiltonian systems and Morales-Ramis theory. I. The case $\ddot x=f(x,t)$, SIAM J. Appl. Dyn. Syst. 8 (2009), 279-297, arXiv:0808.3028.
  2. Acosta-Humánez P.B., van der Put M., Top J., Isomonodromy for the degenerate fifth Painlevé equation, SIGMA 13 (2017), 029, 14 pages, arXiv:1612.03674.
  3. Casale G., Weil J.A., Galoisian methods for testing irreducibility of order two nonlinear differential equations, Pacific J. Math. 297 (2018), 299-337, arXiv:1504.08134.
  4. Clarkson P.A., Painlevé equations - nonlinear special functions, slides presented during the IMA Summer Program Special Functions in the Digital Age, Minneapolis, July 22 - August 2, 2002, available at http://www.math.rug.nl/~top/Clarkson.pdf.
  5. Clarkson P.A., Special polynomials associated with rational solutions of the fifth Painlevé equation, J. Comput. Appl. Math. 178 (2005), 111-129.
  6. Clarkson P.A., Painlevé equations - nonlinear special functions, in Orthogonal Polynomials and Special Functions, Lecture Notes in Math., Vol. 1883, Editors F. Marcellán, W. Van Assche, Springer, Berlin, 2006, 331-411.
  7. Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Studies in Mathematics, Vol. 28, Walter de Gruyter & Co., Berlin, 2002.
  8. Horozov E., Stoyanova T., Non-integrability of some Painlevé VI-equations and dilogarithms, Regul. Chaotic Dyn. 12 (2007), 622-629.
  9. Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448.
  10. Lukashevich N.A., On the theory of Painlevé's third equation, Differ. Uravn. 3 (1967), 1913-1923.
  11. Lukashevich N.A., The solutions of Painlevé's fifth equation, Differ. Uravn. 4 (1968), 1413-1420.
  12. Matsuda M., First-order algebraic differential equations. A differential algebraic approach, Lecture Notes in Math., Vol. 804, Springer, Berlin, 1980.
  13. Morales-Ruiz J.J., A remark about the Painlevé transcendents, in Théories asymptotiques et équations de Painlevé, Sémin. Congr., Vol. 14, Soc. Math. France, Paris, 2006, 229-235.
  14. Morales-Ruiz J.J., Ramis J.P., Galoisian obstructions to integrability of Hamiltonian systems, Methods Appl. Anal. 8 (2001), 33-96.
  15. Morales-Ruiz J.J., Ramis J.P., Simo C., Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Sci. 'Ecole Norm. Sup. (4) 40 (2007), 845-884.
  16. Muntingh G., van der Put M., Order one equations with the Painlevé property, Indag. Math. (N.S.) 18 (2007), 83-95, arXiv:1202.4633.
  17. Nagloo J., Pillay A., On algebraic relations between solutions of a generic Painlevé equation, J. Reine Angew. Math. 726 (2017), 1-27, arXiv:1112.2916.
  18. Ngo Chau L.X., Nguyen K.A., van der Put M., Top J., Equivalence of differential equations of order one, J. Symbolic Comput. 71 (2015), 47-59, arXiv:1303.4960.
  19. Ohyama Y., Kawamuko H., Sakai H., Okamoto K., Studies on the Painlevé equations. V. Third Painlevé equations of special type $P_{\rm III}(D_7)$ and $P_{\rm III}(D_8)$, J. Math. Sci. Univ. Tokyo 13 (2006), 145-204.
  20. Ohyama Y., Okumura S., R. Fuchs' problem of the Painlevé equations from the first to the fifth, in Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., Vol. 593, Amer. Math. Soc., Providence, RI, 2013, 163-178, arXiv:math.CA/0512243.
  21. Stoyanova T., Non-integrability of Painlevé VI equations in the Liouville sense, Nonlinearity 22 (2009), 2201-2230.
  22. Stoyanova T., Non-integrability of Painlevé V equations in the Liouville sense and Stokes phenomenon, Adv. Pure Math. 1 (2011), 170-183.
  23. Stoyanova T., A note on the R. Fuchs's problem for the Painlevé equations, arXiv:1204.0157.
  24. Stoyanova T., Non-integrability of the fourth Painlevé equation in the Liouville-Arnold sense, Nonlinearity 27 (2014), 1029-1044.
  25. Stoyanova T., Christov O., Non-integrability of the second Painlevé equation as a Hamiltonian system, C. R. Acad. Bulgare Sci. 60 (2007), 13-18, arXiv:1103.2443.
  26. Umemura H., On the irreducibility of the first differential equation of Painlevé, in Algebraic Geometry and Commutative Algebra, Vol. II, Kinokuniya, Tokyo, 1988, 771-789.
  27. Umemura H., Second proof of the irreducibility of the first differential equation of Painlevé, Nagoya Math. J. 117 (1990), 125-171.
  28. Umemura H., Birational automorphism groups and differential equations, Nagoya Math. J. 119 (1990), 1-80.
  29. Umemura H., Watanabe H., Solutions of the second and fourth Painlevé equations. I, Nagoya Math. J. 148 (1997), 151-198.
  30. van der Put M., Saito M.H., Moduli spaces for linear differential equations and the Painlevé equations, Ann. Inst. Fourier (Grenoble) 59 (2009), 2611-2667, arXiv:0902.1702.
  31. van der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003.
  32. Żołądek H., Filipuk G., Painlevé equations, elliptic integrals and elementary functions, J. Differential Equations 258 (2015), 1303-1355.

Previous article  Next article  Contents of Volume 15 (2019)