Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 085, 28 pages      arXiv:1808.10125      https://doi.org/10.3842/SIGMA.2019.085

Hitchin Fibrations on Two-Dimensional Moduli Spaces of Irregular Higgs Bundles with One Singular Fiber

Péter Ivanics a, András I. Stipsicz a and Szilárd Szabó b
a) Rényi Institute of Mathematics, 1053 Budapest, Reáltanoda utca 13-15, Hungary
b) Budapest University of Technology and Economics, 1111 Budapest, Egry József utca 1, H épület, Hungary

Received February 02, 2019, in final form October 25, 2019; Published online November 04, 2019

Abstract
We analyze and completely describe the four cases when the Hitchin fibration on a $2$-dimensional moduli space of irregular Higgs bundles over $\mathbb{C}P^{1}$ has a single singular fiber. The case when the fiber at infinity is of type $I_0^*$ is further analyzed, and we give constructions of all the possible configurations of singular curves inelliptic fibrations having this type of singular fiber at infinity.

Key words: irregular Higgs bundles; Hitchin fibration; elliptic fibrations.

pdf (986 kb)   tex (778 kb)  

References

  1. Alekseev A., Malkin A., Meinrenken E., Lie group valued moment maps, J. Differential Geom. 48 (1998), 445-495, arXiv:dg-ga/9707021.
  2. Biquard O., Boalch P., Wild non-abelian Hodge theory on curves, Compos. Math. 140 (2004), 179-204, arXiv:math.DG/0111098.
  3. Boalch P., Hyperkahler manifolds and nonabelian Hodge theory of (irregular) curves, arXiv:1203.6607.
  4. Boalch P., Simply-laced isomonodromy systems, Publ. Math. Inst. Hautes 'Etudes Sci. 116 (2012), 1-68, arXiv:1107.0874.
  5. Boalch P., Geometry and braiding of Stokes data; fission and wild character varieties, Ann. of Math. 179 (2014), 301-365, arXiv:1111.6228.
  6. Boalch P., Yamakawa D., Twisted wild character varieties, arXiv:1512.08091.
  7. Crawley-Boevey W., On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J. 118 (2003), 339-352, arXiv:math.RA/0103101.
  8. de Cataldo M.A.A., Hausel T., Migliorini L., Topology of Hitchin systems and Hodge theory of character varieties: the case $A_1$, Ann. of Math. 175 (2012), 1329-1407, arXiv:1004.1420.
  9. Friedman R., Morgan J.W., Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 27, Springer-Verlag, Berlin, 1994.
  10. Gong C., Lu J., Tan S.-L., On families of complex curves over $\mathbb{P}^1$ with two singular fibers, Osaka J. Math. 53 (2016), 83-99.
  11. Hitchin N.J., The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987), 59-126.
  12. Hitchin N.J., Lie groups and Teichmüller space, Topology 31 (1992), 449-473.
  13. Ivanics P., Stipsicz A., Szabó S., Two-dimensional moduli spaces of rank 2 Higgs bundles over $\mathbb{C}P^1$ with one irregular singular point, J. Geom. Phys. 130 (2018), 184-212, arXiv:1604.08503.
  14. Ivanics P., Stipsicz A., Szabó S., Hitchin fibrations on moduli of irregular Higgs bundles and motivic wall-crossing, J. Pure Appl. Algebra 223 (2019), 3989-4064, arXiv:1710.09922.
  15. Kodaira K., On compact analytic surfaces. II, Ann. of Math. 77 (1963), 563-626.
  16. Kraft H., Procesi C., Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1979), 227-247.
  17. Kronheimer P.B., Nakajima H., Yang-Mills instantons on ALE gravitational instantons, Math. Ann. 288 (1990), 263-307.
  18. Miranda R., Persson's list of singular fibers for a rational elliptic surface, Math. Z. 205 (1990), 191-211.
  19. Nitsure N., Moduli space of semistable pairs on a curve, Proc. London Math. Soc. 62 (1991), 275-300.
  20. Persson U., Configurations of Kodaira fibers on rational elliptic surfaces, Math. Z. 205 (1990), 1-47.
  21. Simpson C., Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), 713-770.
  22. Simpson C., The dual boundary complex of the ${\rm SL}_2$ character variety of a punctured sphere, Ann. Fac. Sci. Toulouse Math. 25 (2016), 317-361, arXiv:1504.05395.
  23. Stipsicz A.I., Szabó Z., Szilárd A., Singular fibers in elliptic fibrations on the rational elliptic surface, Period. Math. Hungar. 54 (2007), 137-162.
  24. Szabó S., The birational geometry of unramified irregular Higgs bundles on curves, Internat. J. Math. 28 (2017), 1750045, 32 pages, arXiv:1502.02003.
  25. Szabó S., Perversity equals weight for Painlevé spaces, arXiv:1802.03798.
  26. Tan S.-L., Chern numbers of a singular fiber, modular invariants and isotrivial families of curves, Acta Math. Vietnam. 35 (2010), 159-172.

Previous article  Next article  Contents of Volume 15 (2019)