Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 081, 7 pages      arXiv:1905.08655      https://doi.org/10.3842/SIGMA.2019.081

A Note on the Derivatives of Isotropic Positive Definite Functions on the Hilbert Sphere

Janin Jäger
Lehrstuhl Numerische Mathematik, Justus-Liebig University, Heinrich-Buff Ring 44, 35392 Giessen, Germany

Received May 22, 2019, in final form October 16, 2019; Published online October 23, 2019

Abstract
In this note we give a recursive formula for the derivatives of isotropic positive definite functions on the Hilbert sphere. We then use it to prove a conjecture stated by Trübner and Ziegel, which says that for a positive definite function on the Hilbert sphere to be in $C^{2\ell}([0,\pi])$, it is necessary and sufficient for its $\infty$-Schoenberg sequence to satisfy $\sum\limits_{m=0}^{\infty}a_m m^{\ell}$ < $\infty$.

Key words: positive definite; isotropic; Hilbert sphere; Schoenberg sequences.

pdf (301 kb)   tex (13 kb)  

References

  1. Arafat A., Gregori P., Porcu E., Schoenberg coefficients and curvature at the origin of continuous isotropic positive definite kernels on spheres, Statist. Probab. Lett. 156 (2020), 108618, 6 pages, arXiv:1807.02363.
  2. Baxter B.J.C., Hubbert S., Radial basis functions for the sphere, in Recent Progress in Multivariate Approximation (Witten-Bommerholz, 2000), Internat. Ser. Numer. Math., Vol. 137, Birkhäuser, Basel, 2001, 33-47.
  3. Beatson R.K., zu Castell W., Dimension hopping and families of strictly positive definite zonal basis functions on spheres, J. Approx. Theory 221 (2017), 22-37, arXiv:1510.08658.
  4. Beatson R.K., zu Castell W., Thinplate splines on the sphere, SIGMA 14 (2018), 083, 22 pages, arXiv:1801.01313.
  5. Beatson R.K., zu Castell W., Xu Y., A Pólya criterion for (strict) positive-definiteness on the sphere, IMA J. Numer. Anal. 34 (2014), 550-568, arXiv:1110.2437.
  6. Berg C., Peron A.P., Porcu E., Schoenberg's theorem for real and complex Hilbert spheres revisited, J. Approx. Theory 228 (2018), 58-78, arXiv:1701.07214.
  7. Bingham N.H., Symons T.L., Gaussian random fields on the sphere and sphere cross line, Stochastic Process. Appl., to appear, arXiv:1812.02103.
  8. Bissiri P.G., Menegatto V.A., Porcu E., Relations between Schoenberg coefficients on real and complex spheres of different dimensions, SIGMA 15 (2019), 004, 12 pages, arXiv:1807.08184.
  9. Chen D., Menegatto V.A., Sun X., A necessary and sufficient condition for strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 131 (2003), 2733-2740.
  10. Fornberg B., Flyer N., A primer on radial basis functions with applications to the geosciences, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 87, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2015.
  11. Gneiting T., Strictly and non-strictly positive definite functions on spheres, Bernoulli 19 (2013), 1327-1349, arXiv:1111.7077.
  12. Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, 8th ed., Academic Press Inc., San Diego, CA, 2014.
  13. Guinness J., Fuentes M., Isotropic covariance functions on spheres: some properties and modeling considerations, J. Multivariate Anal. 143 (2016), 143-152.
  14. Hubbert S., Lê Gia Q.T., Morton T.M., Spherical radial basis functions, theory and applications, SpringerBriefs in Mathematics, Springer, Cham, 2015.
  15. Jäger J., Klein A., Buhmann M., Skrandies W., Reconstruction of electroencephalographic data using radial basis functions, Clinical Neurophysiology 127 (2016), 1978-1983.
  16. Lang A., Schwab C., Isotropic Gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations, Ann. Appl. Probab. 25 (2015), 3047-3094, arXiv:1305.1170.
  17. Menegatto V.A., Strictly positive definite kernels on the Hilbert sphere, Appl. Anal. 55 (1994), 91-101.
  18. Nie Z., Ma C., Isotropic positive definite functions on spheres generated from those in Euclidean spaces, Proc. Amer. Math. Soc. 147 (2019), 3047-3056.
  19. Schoenberg I.J., Positive definite functions on spheres, Duke Math. J. 9 (1942), 96-108.
  20. Trübner M., Ziegel J.F., Derivatives of isotropic positive definite functions on spheres, Proc. Amer. Math. Soc. 145 (2017), 3017-3031, arXiv:1603.06727.
  21. Xu Y., Positive definite functions on the unit sphere and integrals of Jacobi polynomials, Proc. Amer. Math. Soc. 146 (2018), 2039-2048, arXiv:1701.00787.
  22. Ziegel J., Convolution roots and differentiability of isotropic positive definite functions on spheres, Proc. Amer. Math. Soc. 142 (2014), 2063-2077, arXiv:1201.5833.
  23. zu Castell W., Filbir F., Radial basis functions and corresponding zonal series expansions on the sphere, J. Approx. Theory 134 (2005), 65-79.

Previous article  Next article  Contents of Volume 15 (2019)