|
SIGMA 15 (2019), 081, 7 pages arXiv:1905.08655
https://doi.org/10.3842/SIGMA.2019.081
A Note on the Derivatives of Isotropic Positive Definite Functions on the Hilbert Sphere
Janin Jäger
Lehrstuhl Numerische Mathematik, Justus-Liebig University, Heinrich-Buff Ring 44, 35392 Giessen, Germany
Received May 22, 2019, in final form October 16, 2019; Published online October 23, 2019
Abstract
In this note we give a recursive formula for the derivatives of isotropic positive definite functions on the Hilbert sphere. We then use it to prove a conjecture stated by Trübner and Ziegel, which says that for a positive definite function on the Hilbert sphere to be in $C^{2\ell}([0,\pi])$, it is necessary and sufficient for its $\infty$-Schoenberg sequence to satisfy $\sum\limits_{m=0}^{\infty}a_m m^{\ell}$ < $\infty$.
Key words: positive definite; isotropic; Hilbert sphere; Schoenberg sequences.
pdf (301 kb)
tex (13 kb)
References
- Arafat A., Gregori P., Porcu E., Schoenberg coefficients and curvature at the origin of continuous isotropic positive definite kernels on spheres, Statist. Probab. Lett. 156 (2020), 108618, 6 pages, arXiv:1807.02363.
- Baxter B.J.C., Hubbert S., Radial basis functions for the sphere, in Recent Progress in Multivariate Approximation (Witten-Bommerholz, 2000), Internat. Ser. Numer. Math., Vol. 137, Birkhäuser, Basel, 2001, 33-47.
- Beatson R.K., zu Castell W., Dimension hopping and families of strictly positive definite zonal basis functions on spheres, J. Approx. Theory 221 (2017), 22-37, arXiv:1510.08658.
- Beatson R.K., zu Castell W., Thinplate splines on the sphere, SIGMA 14 (2018), 083, 22 pages, arXiv:1801.01313.
- Beatson R.K., zu Castell W., Xu Y., A Pólya criterion for (strict) positive-definiteness on the sphere, IMA J. Numer. Anal. 34 (2014), 550-568, arXiv:1110.2437.
- Berg C., Peron A.P., Porcu E., Schoenberg's theorem for real and complex Hilbert spheres revisited, J. Approx. Theory 228 (2018), 58-78, arXiv:1701.07214.
- Bingham N.H., Symons T.L., Gaussian random fields on the sphere and sphere cross line, Stochastic Process. Appl., to appear, arXiv:1812.02103.
- Bissiri P.G., Menegatto V.A., Porcu E., Relations between Schoenberg coefficients on real and complex spheres of different dimensions, SIGMA 15 (2019), 004, 12 pages, arXiv:1807.08184.
- Chen D., Menegatto V.A., Sun X., A necessary and sufficient condition for strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 131 (2003), 2733-2740.
- Fornberg B., Flyer N., A primer on radial basis functions with applications to the geosciences, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 87, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2015.
- Gneiting T., Strictly and non-strictly positive definite functions on spheres, Bernoulli 19 (2013), 1327-1349, arXiv:1111.7077.
- Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, 8th ed., Academic Press Inc., San Diego, CA, 2014.
- Guinness J., Fuentes M., Isotropic covariance functions on spheres: some properties and modeling considerations, J. Multivariate Anal. 143 (2016), 143-152.
- Hubbert S., Lê Gia Q.T., Morton T.M., Spherical radial basis functions, theory and applications, SpringerBriefs in Mathematics, Springer, Cham, 2015.
- Jäger J., Klein A., Buhmann M., Skrandies W., Reconstruction of electroencephalographic data using radial basis functions, Clinical Neurophysiology 127 (2016), 1978-1983.
- Lang A., Schwab C., Isotropic Gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations, Ann. Appl. Probab. 25 (2015), 3047-3094, arXiv:1305.1170.
- Menegatto V.A., Strictly positive definite kernels on the Hilbert sphere, Appl. Anal. 55 (1994), 91-101.
- Nie Z., Ma C., Isotropic positive definite functions on spheres generated from those in Euclidean spaces, Proc. Amer. Math. Soc. 147 (2019), 3047-3056.
- Schoenberg I.J., Positive definite functions on spheres, Duke Math. J. 9 (1942), 96-108.
- Trübner M., Ziegel J.F., Derivatives of isotropic positive definite functions on spheres, Proc. Amer. Math. Soc. 145 (2017), 3017-3031, arXiv:1603.06727.
- Xu Y., Positive definite functions on the unit sphere and integrals of Jacobi polynomials, Proc. Amer. Math. Soc. 146 (2018), 2039-2048, arXiv:1701.00787.
- Ziegel J., Convolution roots and differentiability of isotropic positive definite functions on spheres, Proc. Amer. Math. Soc. 142 (2014), 2063-2077, arXiv:1201.5833.
- zu Castell W., Filbir F., Radial basis functions and corresponding zonal series expansions on the sphere, J. Approx. Theory 134 (2005), 65-79.
|
|