|
SIGMA 15 (2019), 077, 39 pages arXiv:1805.00924
https://doi.org/10.3842/SIGMA.2019.077
Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras
Matthieu Faitg
IMAG, Univ Montpellier, CNRS, Montpellier, France
Received February 02, 2019, in final form September 24, 2019; Published online October 03, 2019
Abstract
Let $\Sigma_{g,n}$ be a compact oriented surface of genus $g$ with $n$ open disks removed. The algebra $\mathcal{L}_{g,n}(H)$ was introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche and is a combinatorial quantization of the moduli space of flat connections on $\Sigma_{g,n}$. Here we focus on the two building blocks $\mathcal{L}_{0,1}(H)$ and $\mathcal{L}_{1,0}(H)$ under the assumption that the gauge Hopf algebra $H$ is finite-dimensional, factorizable and ribbon, but not necessarily semisimple. We construct a projective representation of $\mathrm{SL}_2(\mathbb{Z})$, the mapping class group of the torus, based on $\mathcal{L}_{1,0}(H)$ and we study it explicitly for $H = \overline{U}_q(\mathfrak{sl}(2))$. We also show that it is equivalent to the representation constructed by Lyubashenko and Majid.
Key words: combinatorial quantization; factorizable Hopf algebra; modular group; restricted quantum group.
pdf (672 kb)
tex (50 kb)
References
- Aghaei N., Gainutdinov A.M., Pawelkiewicz M., Schomerus V., Combinatorial quantisation of ${\rm GL}(1|1)$ Chern-Simons theory I: The torus, arXiv:1811.09123.
- Alekseev A.Yu., Integrability in the Hamiltonian Chern-Simons theory, St. Petersburg Math. J. 6 (1995), 241-253, arXiv:hep-th/9311074.
- Alekseev A.Yu., Grosse H., Schomerus V., Combinatorial quantization of the Hamiltonian Chern-Simons theory. I, Comm. Math. Phys. 172 (1995), 317-358, arXiv:hep-th/9403066.
- Alekseev A.Yu., Grosse H., Schomerus V., Combinatorial quantization of the Hamiltonian Chern-Simons theory. II, Comm. Math. Phys. 174 (1996), 561-604, arXiv:hep-th/9408097.
- Alekseev A.Yu., Schomerus V., Representation theory of Chern-Simons observables, Duke Math. J. 85 (1996), 447-510, arXiv:q-alg/9503016.
- Alekseev A.Yu., Schomerus V., Quantum moduli spaces of flat connections, arXiv:q-alg/9612037.
- Arike Y., A construction of symmetric linear functions on the restricted quantum group $\overline U_q(\mathfrak{sl}_2)$, Osaka J. Math. 47 (2010), 535-557, arXiv:0807.0052.
- Atiyah M.F., Bott R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523-615.
- Baseilhac S., Roche Ph., Unrestricted moduli algebras: the case of punctured spheres, in preparation.
- Ben-Zvi D., Brochier A., Jordan D., Integrating quantum groups over surfaces, J. Topology 11 (2018), 874-917, arXiv:1501.04652.
- Blanchet C., Beliakova A., Gainutdinov A.M., Modified trace is a symmetrised integral, arXiv:1801.00321.
- Brochier A., Jordan D., Fourier transform for quantum $D$-modules via the punctured torus mapping class group, Quantum Topol. 8 (2017), 361-379, arXiv:1403.1841.
- Buffenoir E., Noui K., Roche Ph., Hamiltonian quantization of Chern-Simons theory with ${\rm SL}(2,{\mathbb C})$ group, Classical Quantum Gravity 19 (2002), 4953-5015, arXiv:hep-th/0202121.
- Buffenoir E., Roche Ph., Two-dimensional lattice gauge theory based on a quantum group, Comm. Math. Phys. 170 (1995), 669-698, arXiv:hep-th/9405126.
- Buffenoir E., Roche Ph., Link invariants and combinatorial quantization of Hamiltonian Chern-Simons theory, Comm. Math. Phys. 181 (1996), 331-365, arXiv:q-alg/9507001.
- Bullock D., Frohman C., Kania-Bartoszyńska J., Topological interpretations of lattice gauge field theory, Comm. Math. Phys. 198 (1998), 47-81, arXiv:q-alg/9710003.
- Chekhov L., Mazzocco M., Rubtsov V., Algebras of quantum monodromy data and character varieties, in Geometry and Physics, Vol. I, A Festschrift in honour of Nigel Hitchin, Oxford University Press, Oxford, 2018, 39-68, arXiv:1705.01447.
- Curtis C.W., Reiner I., Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. 11, Interscience Publishers, New York -- London, 1962.
- Drinfeld V.G., Almost cocommutative Hopf algebras, Leningrad Math. J. 1 (1990), 321-342.
- Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Mathematical Surveys and Monographs, Vol. 205, Amer. Math. Soc., Providence, RI, 2015.
- Faitg M., A note on symmetric linear forms and traces on the restricted quantum group $\overline{U}_q(\mathfrak{sl}(2))$, Osaka J. Math., to appear, arXiv:1801.07524.
- Faitg M., Projective representations of mapping class groups in combinatorial quantization, Comm. Math. Phys., to appear, arXiv:1812.00446.
- Farb B., Margalit D., A primer on mapping class groups, Princeton Mathematical Series, Vol. 49, Princeton University Press, Princeton, NJ, 2012.
- Feigin B.L., Gainutdinov A.M., Semikhatov A.M., Tipunin I.Yu., Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center, Comm. Math. Phys. 265 (2006), 47-93, arXiv:hep-th/0504093.
- Fock V.V., Rosly A.A., Flat connections and polyubles, Theoret. and Math. Phys. 95 (1993), 526-534.
- Fock V.V., Rosly A.A., Poisson structure on moduli of flat connections on Riemann surfaces and the $r$-matrix, in Moscow Seminar in Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, Vol. 191, Amer. Math. Soc., Providence, RI, 1999, 67-86, arXiv:math.QA/9802054.
- Gainutdinov A.M., Tipunin I.Yu., Radford, Drinfeld and Cardy boundary states in the $(1,p)$ logarithmic conformal field models, J. Phys A: Math. Theor. 42 (2009), 315207, 30 pages, arXiv:0711.3430.
- Goldman W.M., Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986), 263-302.
- Ibanez E., Evaluable Jones-Wenzl idempotents at root of unity and modular representation on the center of $\overline{U}_q {\mathfrak{sl}}(2)$, Ph.D. Thesis, Université de Montpellier, France, 2016, arXiv:1604.03681.
- Kassel C., Quantum groups, Graduate Texts in Mathematics, Vol. 155, Springer-Verlag, New York, 1995.
- Kondo H., Saito Y., Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to ${\mathfrak{sl}}_2$, J. Algebra 330 (2011), 103-129, arXiv:0901.4221.
- Lyubashenko V., Invariants of $3$-manifolds and projective representations of mapping class groups via quantum groups at roots of unity, Comm. Math. Phys. 172 (1995), 467-516, arXiv:hep-th/9405167.
- Lyubashenko V., Majid S., Braided groups and quantum Fourier transform, J. Algebra 166 (1994), 506-528.
- Meusburger C., Wise D.K., Hopf algebra gauge theory on a ribbon graph, arXiv:1512.03966.
- Montgomery S., Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, Vol. 82, Amer. Math. Soc., Providence, RI, 1993.
- Radford D.E., Hopf algebras, Series on Knots and Everything, Vol. 49, World Sci. Publ. Co. Pte. Ltd., Hackensack, NJ, 2012.
- Reshetikhin N.Yu., Semenov-Tian-Shansky M.A., Quantum $R$-matrices and factorization problems, J. Geom. Phys. 5 (1988), 533-550.
- Schomerus V., Deformed gauge symmetry in local quantum physics, Habilitation Thesis, Hamburg, Germany, 1998.
- Suter R., Modules over $\overline{U}_q(\mathfrak{sl}_2)$, Comm. Math. Phys. 163 (1994), 359-393.
|
|