|
SIGMA 15 (2019), 076, 16 pages arXiv:1905.02434
https://doi.org/10.3842/SIGMA.2019.076
Momentum Sections in Hamiltonian Mechanics and Sigma Models
Noriaki Ikeda
Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
Received May 24, 2019, in final form September 29, 2019; Published online October 03, 2019
Abstract
We show a constrained Hamiltonian system and a gauged sigma model have a structure of a momentum section and a Hamiltonian Lie algebroid theory recently introduced by Blohmann and Weinstein. We propose a generalization of a momentum section on a pre-multisymplectic manifold by considering gauged sigma models on higher-dimensional manifolds.
Key words: symplectic geometry; Lie algebroid; Hamiltonian mechanics; nonlinear sigma model.
pdf (405 kb)
tex (23 kb)
References
- Blohmann C., Fernandes M.C.B., Weinstein A., Groupoid symmetry and constraints in general relativity, Commun. Contemp. Math. 15 (2013), 1250061, 25 pages, arXiv:1003.2857.
- Blohmann C., Weinstein A., Hamiltonian Lie algebroids, arXiv:1811.11109.
- Bouwknegt P., Bugden M., Klimčík C., Wright K., Hidden isometry of ''T-duality without isometry'', J. High Energy Phys. 2017 (2017), no. 8, 116, 19 pages, arXiv:1705.09254.
- Bursztyn H., Cavalcanti G.R., Gualtieri M., Reduction of Courant algebroids and generalized complex structures, Adv. Math. 211 (2007), 726-765, arXiv:math.DG/0509640.
- Buscher T.H., A symmetry of the string background field equations, Phys. Lett. B 194 (1987), 59-62.
- Buscher T.H., Path-integral derivation of quantum duality in nonlinear sigma-models, Phys. Lett. B 201 (1988), 466-472.
- Callies M., Frégier Y., Rogers C.L., Zambon M., Homotopy moment maps, Adv. Math. 303 (2016), 954-1043, arXiv:1304.2051.
- Cariñena J.F., Crampin M., Ibort L.A., On the multisymplectic formalism for first order field theories, Differential Geom. Appl. 1 (1991), 345-374.
- Cavalcanti G.R., Gualtieri M., Generalized complex geometry and T-duality, in A Celebration of the Mathematical Legacy of Raoul Bott, CRM Proc. Lecture Notes, Vol. 50, Amer. Math. Soc., Providence, RI, 2010, 341-365, arXiv:1106.1747.
- Chatzistavrakidis A., Deser A., Jonke L., T-duality without isometry via extended gauge symmetries of 2D sigma models, J. High Energy Phys. 2016 (2016), no. 1, 154, 20 pages, arXiv:1509.01829.
- Chatzistavrakidis A., Deser A., Jonke L., Strobl T., Beyond the standard gauging: gauge symmetries of Dirac sigma models, J. High Energy Phys. 2016 (2016), no. 8, 172, 28 pages, arXiv:1607.00342.
- Chatzistavrakidis A., Deser A., Jonke L., Strobl T., Gauging as constraining: the universal generalised geometry action in two dimensions, PoS Proc. Sci. (2017), PoS(CORFU2016), 087, 20 pages, arXiv:1705.05007.
- Chatzistavrakidis A., Deser A., Jonke L., Strobl T., Strings in singular space-times and their universal gauge theory, Ann. Henri Poincaré 18 (2017), 2641-2692, arXiv:1608.03250.
- Gotay M.J., Isenberg J., Marsden J.E., Montgomery R., Momentum maps and classical relativistic fields. Part I: Covariant field theory, arXiv:physics/9801019.
- Herman J., Weak moment maps in multisymplectic geometry, arXiv:1807.01641.
- Higgins P.J., Mackenzie K., Algebraic constructions in the category of Lie algebroids, J. Algebra 129 (1990), 194-230.
- Hull C.M., Spence B., The geometry of the gauged sigma-model with Wess-Zumino term, Nuclear Phys. B 353 (1991), 379-426.
- Ikeda N., Lectures on AKSZ sigma models for physicists, in Noncommutative Geometry and Physics 4, World Sci. Publ., Hackensack, NJ, 2017, 79-169, arXiv:1204.3714.
- Ikeda N., Strobl T., On the relation of Lie algebroids to constrained systems and their BV/BFV formulation, Ann. Henri Poincar'e 20 (2019), 527-541, arXiv:1803.00080.
- Ikeda N., Uchino K., QP-structures of degree 3 and 4D topological field theory, Comm. Math. Phys. 303 (2011), 317-330, arXiv:1004.0601.
- Kotov A., Strobl T., Lie algebroids, gauge theories, and compatible geometrical structures, Rev. Math. Phys. 31 (2019), 1950015, 31 pages, arXiv:1603.04490.
- Liu Z.-J., Weinstein A., Xu P., Manin triples for Lie bialgebroids, J. Differential Geom. 45 (1997), 547-574, arXiv:dg-ga/9508013.
- Mackenzie K., Lie groupoids and Lie algebroids in differential geometry, London Mathematical Society Lecture Note Series, Vol. 124, Cambridge University Press, Cambridge, 1987.
- Madsen T.B., Swann A., Multi-moment maps, Adv. Math. 229 (2012), 2287-2309, arXiv:1012.2048.
- Madsen T.B., Swann A., Closed forms and multi-moment maps, Geom. Dedicata 165 (2013), 25-52, arXiv:1110.6541.
- Vaintrob A.Yu., Lie algebroids and homological vector fields, Russian Math. Surveys 52 (1997), 428-429.
- Wright K., Lie algebroid gauging of non-linear sigma models, J. Geom. Phys. 146 (2019), 103490, 23 pages, arXiv:1905.00659.
|
|