|
SIGMA 15 (2019), 064, 22 pages arXiv:1903.01228
https://doi.org/10.3842/SIGMA.2019.064
Lagrangian Grassmannians and Spinor Varieties in Characteristic Two
Bert van Geemen a and Alessio Marrani bc
a) Dipartimento di Matematica, Università di Milano, Via Saldini 50, I-20133 Milano, Italy
b) Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Via Panisperna 89A, I-00184, Roma, Italy
c) Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, and INFN, sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
Received March 08, 2019, in final form August 21, 2019; Published online August 27, 2019
Abstract
The vector space of symmetric matrices of size $n$ has a natural map to a projective space of dimension $2^n-1$ given by the principal minors. This map extends to the Lagrangian Grassmannian ${\rm LG}(n,2n)$ and over the complex numbers the image is defined, as a set, by quartic equations. In case the characteristic of the field is two, it was observed that, for $n=3,4$, the image is defined by quadrics. In this paper we show that this is the case for any $n$ and that moreover the image is the spinor variety associated to ${\rm Spin}(2n+1)$. Since some of the motivating examples are of interest in supergravity and in the black-hole/qubit correspondence, we conclude with a brief examination of other cases related to integral Freudenthal triple systems over integral cubic Jordan algebras.
Key words: Lagrangian Grassmannian; spinor variety; characteristic two; Freudenthal triple system.
pdf (473 kb)
tex (32 kb)
References
- Bellucci S., Ferrara S., Günaydin M., Marrani A., Charge orbits of symmetric special geometries and attractors, Internat. J. Modern Phys. A 21 (2006), 5043-5097, arXiv:hep-th/0606209.
- Borsten L., Dahanayake D., Duff M.J., Ebrahim H., Rubens W., Black holes, qubits and octonions, Phys. Rep. 471 (2009), 113-219, arXiv:0809.4685.
- Borsten L., Dahanayake D., Duff M.J., Rubens W., Black holes admitting a Freudenthal dual, Phys. Rev. D 80 (2009), 026003, 28 pages, arXiv:0903.5517.
- Borsten L., Duff M.J., Ferrara S., Marrani A., Rubens W., Small orbits, Phys. Rev. D 85 (2012), 086002, 27 pages, arXiv:1108.0424.
- Borsten L., Duff M.J., Lévay P., The black-hole/qubit correspondence: an up-to-date review, Classical Quantum Gravity 29 (2012), 224008, 80 pages, arXiv:1206.3166.
- Brown R.B., Groups of type $E_{7}$, J. Reine Angew. Math. 236 (1969), 79-102.
- Cerchiai B.L., Ferrara S., Marrani A., Zumino B., Duality, entropy, and ADM mass in supergravity, Phys. Rev. D 79 (2009), 125010, 23 pages, arXiv:0902.3973.
- Chevalley C.C., The algebraic theory of spinors, Columbia University Press, New York, 1954.
- Conrad B., Gabber O., Prasad G., Pseudo-reductive groups, 2nd ed., New Mathematical Monographs, Vol. 26, Cambridge University Press, Cambridge, 2015.
- Duff M.J., String triality, black hole entropy, and Cayley's hyperdeterminant, Phys. Rev. D 76 (2007), 025017, 4 pages, arXiv:hep-th/0601134.
- Ferrara S., Gimon E.G., Kallosh R., Magic supergravities, $N=8$ black hole composites, Phys. Rev. D 74 (2006), 125018, 18 pages, arXiv:hep-th/0606211.
- Ferrara S., Günaydin M., Orbits of exceptional groups, duality and BPS states in string theory, Internat. J. Modern Phys. A 13 (1998), 2075-2088, arXiv:hep-th/9708025.
- Ferrara S., Kallosh R., Marrani A., Degeneration of groups of type $E_7$ and minimal coupling in supergravity, J. High Energy Phys. 2012 (2012), no. 6, 074, 47 pages, arXiv:1202.1290.
- Ferrara S., Marrani A., On the moduli space of non-BPS attractors for ${\mathcal N}=2$ symmetric manifolds, Phys. Lett. B 652 (2007), 111-117, arXiv:0706.1667.
- Freudenthal H., Sur le groupe exceptionnel $E_7$, Nederl. Akad. Wetensch. Proc. Ser. A. 15 (1953), 81-89.
- van Geemen B., Schottky-Jung relations and vectorbundles on hyperelliptic curves, Math. Ann. 281 (1988), 431-449.
- Gow R., Contraction of exterior powers in characteristic $2$ and the spin module, Geom. Dedicata 64 (1997), 283-295.
- Griffiths P., Harris J., Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978.
- Holtz O., Sturmfels B., Hyperdeterminantal relations among symmetric principal minors, J. Algebra 316 (2007), 634-648, arXiv:math.RA/0604374.
- Holweck F., Geometric constructions over ${\mathbb C}$ and ${\mathbb F}_2$ for quantum information, in Quantum Physics and Geometry, Lect. Notes Unione Mat. Ital., Vol. 25, Springer, Cham, 2019, 87-124, arXiv:1810.04258.
- Holweck F., Saniga M., Lévay P., A notable relation between $N$-qubit and $2^{N-1}$-qubit Pauli groups via binary ${\rm LGr}(N,2N)$, SIGMA 10 (2014), 041, 16 pages, arXiv:1311.2408.
- Iliev A., Ranestad K., Geometry of the Lagrangian Grassmannian ${\bf LG}(3,6)$ with applications to Brill-Noether loci, Michigan Math. J. 53 (2005), 383-417, arXiv:math.AG/0209169.
- Jordan P., von Neumann J., Wigner E., On an algebraic generalization of the quantum mechanical formalism, Ann. of Math. 35 (1934), 29-64.
- Kallosh R., Linde A., Strings, black holes, and quantum information, Phys. Rev. D 73 (2006), 104033, 15 pages, arXiv:hep-th/0602061.
- Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, Vol. 129, Cambridge University Press, Cambridge, 1990.
- Krutelevich S., Jordan algebras, exceptional groups, and Bhargava composition, J. Algebra 314 (2007), 924-977, arXiv:math.NT/0411104.
- Landsberg J.M., Manivel L., The projective geometry of Freudenthal's magic square, J. Algebra 239 (2001), 477-512, arXiv:math.AG/9908039.
- Lévay P., Holweck F., Finite geometric toy model of spacetime as an error correcting code, Phys. Rev. D 99 (2019), 086015, 49 pages, arXiv:1812.07242.
- Manivel L., On spinor varieties and their secants, SIGMA 5 (2009), 078, 22 pages, arXiv:0904.0565.
- Manivel L., Michałek M., Secants of minuscule and cominuscule minimal orbits, Linear Algebra Appl. 481 (2015), 288-312, arXiv:1401.1956.
- Milne J.S., Algebraic groups: the theory of group schemes of finite type over a field, Cambridge Studies in Advanced Mathematics, Vol. 170, Cambridge University Press, Cambridge, 2017.
- Oeding L., Set-theoretic defining equations of the tangential variety of the Segre variety, J. Pure Appl. Algebra 215 (2011), 1516-1527, arXiv:0911.5276.
- Oeding L., Set-theoretic defining equations of the variety of principal minors of symmetric matrices, Algebra Number Theory 5 (2011), 75-109, arXiv:0809.4236.
- Procesi C., Lie groups: an approach through invariants and representations, Universitext, Springer, New York, 2007.
- Ranestad K., Schreyer F.-O., Varieties of sums of powers, J. Reine Angew. Math. 525 (2000), 147-181, arXiv:math.AG/9801110.
- Russo F., Projective duality and non-degenerated symplectic Monge-Ampère equations, in Geometry of Lagrangian Grassmannians and Nonlinear PDEs, Banach Center Publ., Vol. 117, Polish Acad. Sci. Inst. Math., Warsaw, 2019, 113-144.
- Seshadri C.S., Geometry of $G/P$. I. Theory of standard monomials for minuscule representations, in C.P. Ramanujam - a tribute, Tata Inst. Fund. Res. Studies in Math., Vol. 8, Springer, Berlin - New York, 1978, 207-239.
- Steinberg R., The isomorphism and isogeny theorems for reductive algebraic groups, J. Algebra 216 (1999), 366-383.
- Sturmfels B., Velasco M., Blow-ups of ${\mathbb P}^{n-3}$ at $n$ points and spinor varieties, J. Commut. Algebra 2 (2010), 223-244, arXiv:0906.5096.
- Wilson R.A., A quaternionic construction of $E_7$, Proc. Amer. Math. Soc. 142 (2014), 867-880.
- Zak F.L., Tangents and secants of algebraic varieties, Translations of Mathematical Monographs, Vol. 127, Amer. Math. Soc., Providence, RI, 1993.
|
|