|
SIGMA 15 (2019), 051, 23 pages arXiv:1811.07854
https://doi.org/10.3842/SIGMA.2019.051
De Rham 2-Cohomology of Real Flag Manifolds
Viviana del Barco ab and Luiz Antonio Barrera San Martin b
a) UNR-CONICET, Rosario, Argentina
b) IMECC-UNICAMP, Campinas, Brazil
Received January 08, 2019, in final form June 25, 2019; Published online July 05, 2019
Abstract
Let $\mathbb{F}_{\Theta }=G/P_{\Theta }$ be a flag manifold associated to a non-compact real simple Lie group $G$ and the parabolic subgroup $P_{\Theta }$. This is a closed subgroup of $G$ determined by a subset $\Theta $ of simple restricted roots of $\mathfrak{g}=\operatorname{Lie}(G)$. This paper computes the second de Rham cohomology group of $\mathbb{F}_\Theta$. We prove that it is zero in general, with some rare exceptions. When it is non-zero, we give a basis of $H^2(\mathbb{F}_\Theta,\mathbb{R})$ through the Weil construction of closed 2-forms as characteristic forms of principal fiber bundles. The starting point is the computation of the second homology group of $\mathbb{F}_{\Theta }$ with coefficients in a ring $R$.
Key words: flag manifold; cellular homology; Schubert cell; de Rham cohomology; characteristic classes.
pdf (515 kb)
tex (631 kb)
References
- Bott R., Samelson H., Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964-1029.
- Hatcher A., Algebraic topology, Cambridge University Press, Cambridge, 2002.
- Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, Vol. 80, Academic Press, Inc., New York - London, 1978.
- Knapp A.W., Lie groups beyond an introduction, Progress in Mathematics, Vol. 140, Birkhäuser Boston, Inc., Boston, MA, 1996.
- Kobayashi S., Nomizu K., Foundations of differential geometry, Vol. II, Interscience Tracts in Pure and Applied Mathematics, Vol. 15, Interscience Publishers John Wiley & Sons, Inc., New York - London - Sydney, 1969.
- Kocherlakota R.R., Integral homology of real flag manifolds and loop spaces of symmetric spaces, Adv. Math. 110 (1995), 1-46.
- Mare A.-L., Equivariant cohomology of real flag manifolds, Differential Geom. Appl. 24 (2006), 223-229, arXiv:math.DG/0404369.
- Rabelo L., San Martin L.A.B., Cellular homology of real flag manifolds, arXiv:1810.00934.
- San Martin L.A.B., Álgebras de Lie, 2nd ed., UNICAMP, Campinas, 2010.
- Silva J.L., Rabelo L., Half-shifted Young diagrams and homology of real Grassmannians, arXiv:1604.02177.
- Warner G., Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Vol. 188, Springer-Verlag, New York - Heidelberg, 1972.
- Wiggerman M., The fundamental group of a real flag manifold, Indag. Math. (N.S.) 9 (1998), 141-153.
|
|