|
SIGMA 15 (2019), 045, 18 pages arXiv:1811.09096
https://doi.org/10.3842/SIGMA.2019.045
Lax Representations for Separable Systems from Benenti Class
Maciej Błaszak a and Ziemowit Domański b
a) Faculty of Physics, Division of Mathematical Physics, A. Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
b) Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań, Poland
Received December 13, 2018, in final form June 07, 2019; Published online June 18, 2019
Abstract
In this paper we construct Lax pairs for Stäckel systems with separation curves from so-called Benenti class. For each system of considered family we present an infinite family of Lax representations, parameterized by smooth functions of spectral parameter.
Key words: Lax representation; Stäckel system; Benenti system; Hamiltonian mechanics.
pdf (362 kb)
tex (19 kb)
References
- Benenti S., Inertia tensors and Stäckel systems in the Euclidean spaces, Rend. Sem. Mat. Univ. Politec. Torino 50 (1992), 315-341.
- Benenti S., Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation, J. Math. Phys. 38 (1997), 6578-6602.
- Benenti S., Special symmetric two-tensors, equivalent dynamical systems, cofactor and bi-cofactor systems, Acta Appl. Math. 87 (2005), 33-91.
- Błaszak M., Separable systems with quadratic in momenta first integrals, J. Phys. A: Math. Gen. 38 (2005), 1667-1685, arXiv:nlin.SI/0312025.
- Błaszak M., Non-autonomous Hénon-Heiles system from Painlevé class, Phys. Lett. A 383 (2019), 2149-2152, arXiv:1904.05203.
- Błaszak M., Sergyeyev A., Natural coordinates for a class of Benenti systems, Phys. Lett. A 365 (2007), 28-33, arXiv:nlin.SI/0604022.
- Błaszak M., Sergyeyev A., Generalized Stäckel systems, Phys. Lett. A 375 (2011), 2617-2623.
- Eilbeck J.C., Enol'skii V.Z., Kuznetsov V.B., Tsiganov A.V., Linear $r$-matrix algebra for classical separable systems, J. Phys. A: Math. Gen. 27 (1994), 567-578, arXiv:hep-th/9306155.
- Marciniak K., Błaszak M., Flat coordinates of flat Stäckel systems, Appl. Math. Comput. 268 (2015), 706-716, arXiv:1406.2117.
- Mumford D., Tata lectures on theta. II, Progress in Mathematics, Vol. 43, Birkhäuser Boston, Inc., Boston, MA, 1984.
- Rauch-Wojciechowski S., Marciniak K., Błaszak M., Two Newton decompositions of stationary flows of KdV and Harry Dym hierarchies, Phys. A 233 (1996), 307-330.
- Ravoson V., Gavrilov L., Caboz R., Separability and Lax pairs for Hénon-Heiles system, J. Math. Phys. 34 (1993), 2385-2393.
- Tsiganov A.V., Duality between integrable Stäckel systems, J. Phys. A: Math. Gen. 32 (1999), 7965-7982, arXiv:solv-int/9812001.
- Vanhaecke P., Integrable systems in the realm of algebraic geometry, 2nd ed., Lecture Notes in Math., Vol. 1638, Springer-Verlag, Berlin, 2001.
|
|