|
SIGMA 15 (2019), 044, 35 pages arXiv:1811.01855
https://doi.org/10.3842/SIGMA.2019.044
A Variational Perspective on Continuum Limits of ABS and Lattice GD Equations
Mats Vermeeren
Institut für Mathematik, MA 7-1, Technische Universität Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany
Received November 20, 2018, in final form May 16, 2019; Published online June 03, 2019
Abstract
A pluri-Lagrangian structure is an attribute of integrability for lattice equations and for hierarchies of differential equations. It combines the notion of multi-dimensional consistency (in the discrete case) or commutativity of the flows (in the continuous case) with a variational principle. Recently we developed a continuum limit procedure for pluri-Lagrangian systems, which we now apply to most of the ABS list and some members of the lattice Gelfand-Dickey hierarchy. We obtain pluri-Lagrangian structures for many hierarchies of integrable PDEs for which such structures where previously unknown. This includes the Krichever-Novikov hierarchy, the double hierarchy of sine-Gordon and modified KdV equations, and a first example of a continuous multi-component pluri-Lagrangian system.
Key words: continuum limits; pluri-Lagrangian systems; Lagrangian multiforms; multidimensional consistency.
pdf (548 kb)
tex (77 kb)
References
- Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, Vol. 55, U.S. Government Printing Office, Washington, D.C., 1964.
- Adler V.E., Bobenko A.I., Suris Yu.B., Classification of integrable equations on quad-graphs. The consistency approach, Comm. Math. Phys. 233 (2003), 513-543, arXiv:nlin.SI/0202024.
- Adler V.E., Suris Yu.B., ${\rm Q}_4$: integrable master equation related to an elliptic curve, Int. Math. Res. Not. 2004 (2004), 2523-2553.
- Bobenko A.I., Suris Yu.B., On the Lagrangian structure of integrable quad-equations, Lett. Math. Phys. 92 (2010), 17-31, arXiv:0912.2464.
- Boll R., Petrera M., Suris Yu.B., What is integrability of discrete variational systems?, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2014), 20130550, 15 pages, arXiv:1307.0523.
- Dickey L.A., Soliton equations and Hamiltonian systems, 2nd ed., Advanced Series in Mathematical Physics, Vol. 26, World Sci. Publ. Co., Inc., River Edge, NJ, 2003.
- Fu W., Nijhoff F.W., On reductions of the discrete Kadomtsev-Petviashvili-type equations, J. Phys. A: Math. Theor. 50 (2017), 505203, 21 pages, arXiv:1705.04819.
- Fu W., Nijhoff F.W., Linear integral equations, infinite matrices, and soliton hierarchies, J. Math. Phys. 59 (2018), 071101, 28 pages, arXiv:1703.08137.
- Hietarinta J., Joshi N., Nijhoff F.W., Discrete systems and integrability, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2016.
- Hietarinta J., Zhang D.-J., Soliton solutions for ABS lattice equations. II. Casoratians and bilinearization, J. Phys. A: Math. Theor. 42 (2009), 404006, 30 pages, arXiv:0903.1717.
- Hirota R., Nonlinear partial difference equations. III. Discrete sine-Gordon equation, J. Phys. Soc. Japan 43 (1977), 2079-2086.
- Krichever I.M., Novikov S.P., Holomorphic bundles over algebraic curves and non-linear equations, Russian Math. Surveys 35 (1980), no. 6, 53-79.
- Lobb S., Nijhoff F., Lagrangian multiforms and multidimensional consistency, J. Phys. A: Math. Theor. 42 (2009), 454013, 18 pages, arXiv:0903.4086.
- Lobb S.B., Nijhoff F.W., Lagrangian multiform structure for the lattice Gel'fand-Dikii hierarchy, J. Phys. A: Math. Theor. 43 (2010), 072003, 11 pages, arXiv:0911.1234.
- Miura R.M., Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Math. Phys. 9 (1968), 1202-1204.
- Miwa T., On Hirota's difference equations, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), 9-12.
- Nijhoff F.W., Lax pair for the Adler (lattice Krichever-Novikov) system, Phys. Lett. A 297 (2002), 49-58, arXiv:nlin.SI/0110027.
- Nijhoff F., Atkinson J., Hietarinta J., Soliton solutions for ABS lattice equations. I. Cauchy matrix approach, J. Phys. A: Math. Theor. 42 (2009), 404005, 34 pages, arXiv:0902.4873.
- Nijhoff F., Capel H., The discrete Korteweg-de Vries equation, Acta Appl. Math. 39 (1995), 133-158.
- Nijhoff F.W., Papageorgiou V.G., Capel H.W., Quispel G.R.W., The lattice Gel'fand-Dikiǐ hierarchy, Inverse Problems 8 (1992), 597-621.
- Quispel G.R.W., Nijhoff F.W., Capel H.W., van der Linden J., Linear integral equations and nonlinear difference-difference equations, Phys. A 125 (1984), 344-380.
- SageMath, the Sage Mathematics Software System (Version 7.5.1), 2017, http: www.sagemath.org.
- Suris Yu.B., Vermeeren M., On the Lagrangian structure of integrable hierarchies, in Advances in Discrete Differential Geometry, Springer, Berlin, 2016, 347-378, arXiv:1510.03724.
- Tongas A., Nijhoff F., The Boussinesq integrable system: compatible lattice and continuum structures, Glasg. Math. J. 47 (2005), 205-219, arXiv:nlin.SI/0402053.
- Vermeeren M., Continuum limits of pluri-Lagrangian systems, J. Integrable Syst. 4 (2019), xyy020, 34 pages, arXiv:1706.06830.
- Walker A.J., Similarity reductions and integrable lattice equations, Ph.D. Thesis, University of Leeds, 2001, available at http: etheses.whiterose.ac.uk/7190/.
- Wiersma G.L., Capel H.W., Lattice equations, hierarchies and Hamiltonian structures, Phys. A 142 (1987), 199-244.
- Yoo-Kong S., Lobb S., Nijhoff F., Discrete-time Calogero-Moser system and Lagrangian 1-form structure, J. Phys. A: Math. Theor. 44 (2011), 365203, 39 pages, arXiv:1102.0663.
- Zagier D., The dilogarithm function, in Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 3-65.
- Zhang D., Zhang D.-J., Rational solutions to the ABS list: transformation approach, SIGMA 13 (2017), 078, 24 pages, arXiv:1702.01266.
- Zhao S.-L., Zhang D.-J., Rational solutions to ${\rm Q}3_{\delta}$ in the Adler-Bobenko-Suris list and degenerations, J. Nonlinear Math. Phys. 26 (2019), 107-132, arXiv:1703.05669.
|
|