|
SIGMA 15 (2019), 041, 31 pages arXiv:1807.07703
https://doi.org/10.3842/SIGMA.2019.041
Contribution to the Special Issue on Moonshine and String Theory
Hecke Operators on Vector-Valued Modular Forms
Vincent Bouchard a, Thomas Creutzig ab and Aniket Joshi a
a) Department of Mathematical & Statistical Sciences, University of Alberta, 632 Central Academic Building, Edmonton T6G 2G1, Canada
b) Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
Received September 26, 2018, in final form May 13, 2019; Published online May 25, 2019
Abstract
We study Hecke operators on vector-valued modular forms for the Weil representation $\rho_L$ of a lattice $L$. We first construct Hecke operators $\mathcal{T}_r$ that map vector-valued modular forms of type $\rho_L$ into vector-valued modular forms of type $\rho_{L(r)}$, where $L(r)$ is the lattice $L$ with rescaled bilinear form $(\cdot, \cdot)_r = r (\cdot, \cdot)$, by lifting standard Hecke operators for scalar-valued modular forms using Siegel theta functions. The components of the vector-valued Hecke operators $\mathcal{T}_r$ have appeared in [Comm. Math. Phys. 350 (2017), 1069-1121] as generating functions for D4-D2-D0 bound states on K3-fibered Calabi-Yau threefolds. We study algebraic relations satisfied by the Hecke operators $\mathcal{T}_r$. In the particular case when $r=n^2$ for some positive integer $n$, we compose $\mathcal{T}_{n^2}$ with a projection operator to construct new Hecke operators $\mathcal{H}_{n^2}$ that map vector-valued modular forms of type $\rho_L$ into vector-valued modular forms of the same type. We study algebraic relations satisfied by the operators $\mathcal{H}_{n^2}$, and compare our operators with the alternative construction of Bruinier-Stein [Math. Z. 264 (2010), 249-270] and Stein [Funct. Approx. Comment. Math. 52 (2015), 229-252].
Key words: Hecke operators; vector-valued modular forms; Weil representation.
pdf (561 kb)
tex (32 kb)
References
- Ajouz A., Hecke operators on Jacobi forms of lattice index and the relation to elliptic modular form, Ph.D. Thesis, University of Siegen, 2015.
- Booker T., Davydov A., Commutative algebras in Fibonacci categories, J. Algebra 355 (2012), 176-204, arXiv:1103.3537.
- Borcherds R.E., Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), 491-562, arXiv:alg-geom/9609022.
- Borcherds R.E., Reflection groups of Lorentzian lattices, Duke Math. J. 104 (2000), 319-366, arXiv:math.GR/9909123.
- Bouchard V., Creutzig T., Diaconescu D.-E., Doran C., Quigley C., Sheshmani A., Vertical D4-D2-D0 bound states on K3 fibrations and modularity, Comm. Math. Phys. 350 (2017), 1069-1121, arXiv:1601.04030.
- Boylan H., Jacobi forms, finite quadratic modules and Weil representations over number fields, Lecture Notes in Math., Vol. 2130, Springer, Cham, 2015.
- Bruinier J.H., On the converse theorem for Borcherds products, J. Algebra 397 (2014), 315-342, arXiv:1210.4821.
- Bruinier J.H., Stein O., The Weil representation and Hecke operators for vector valued modular forms, Math. Z. 264 (2010), 249-270, arXiv:0704.1868.
- Carnahan S., Generalized moonshine, II: Borcherds products, Duke Math. J. 161 (2012), 893-950, arXiv:0908.4223.
- Creutzig T., McRae R., Kanade S., Tensor categories for vertex operator superalgebra extensions, arXiv:1705.05017.
- Diamond F., Shurman J., A first course in modular forms, Graduate Texts in Mathematics, Vol. 228, Springer-Verlag, New York, 2005.
- Eholzer W., Skoruppa N.-P., Conformal characters and theta series, Lett. Math. Phys. 35 (1995), 197-211, arXiv:hep-th/9410077.
- Eichler M., Zagier D., The theory of Jacobi forms, Progress in Mathematics, Vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985.
- Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Mathematical Surveys and Monographs, Vol. 205, Amer. Math. Soc., Providence, RI, 2015.
- Gholampour A., Sheshmani A., Donaldson-Thomas invariants of 2-dimensional sheaves inside threefolds and modular forms, Adv. Math. 326 (2018), 79-107, arXiv:1309.0050.
- Harvey J.A., Moore G., Algebras, BPS states, and strings, Nuclear Phys. B 463 (1996), 315-368, arXiv:hep-th/9510182.
- Harvey J.A., Moore G., On the algebras of BPS states, Comm. Math. Phys. 197 (1998), 489-519, arXiv:hep-th/9609017.
- Harvey J.A., Wu Y., Hecke relations in rational conformal field theory, J. High Energy Phys. 2018 (2018), no. 9, 032, 37 pages, arXiv:1804.06860.
- Höhn G., Scheithauer N.R., A natural construction of Borcherds' fake Baby Monster Lie algebra, Amer. J. Math. 125 (2003), 655-667, arXiv:math.QA/0312106.
- Huang Y.-Z., Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math. 10 (2008), 871-911, arXiv:math.QA/0502533.
- Huang Y.-Z., Kirillov Jr. A., Lepowsky J., Braided tensor categories and extensions of vertex operator algebras, Comm. Math. Phys. 337 (2015), 1143-1159, arXiv:1406.3420.
- Joshi A., Hecke operators on vector-valued modular forms of the Weil representation, MSc. Thesis, University of Alberta, 2018.
- Maldacena J., Strominger A., Witten E., Black hole entropy in M-theory, J. High Energy Phys. 1997 (1997), no. 12, 002, 16 pages, arXiv:hep-th/9711053.
- Raum M., Computing genus 1 Jacobi forms, Math. Comp. 85 (2016), 931-960, arXiv:1212.1834.
- Rössler M., Hecke operators and vector valued modular forms, MSc. Thesis, Technische Universität Darmstadt, 2015.
- Scheithauer N.R., Generalized Kac-Moody algebras, automorphic forms and Conway's group. I, Adv. Math. 183 (2004), 240-270.
- Scheithauer N.R., Generalized Kac-Moody algebras, automorphic forms and Conway's group. II, J. Reine Angew. Math. 625 (2008), 125-154.
- Scheithauer N.R., The Weil representation of ${\rm SL}_2({\mathbb Z})$ and some applications, Int. Math. Res. Not. 2009 (2009), 1488-1545.
- Stein O., The Fourier expansion of Hecke operators for vector-valued modular forms, Funct. Approx. Comment. Math. 52 (2015), 229-252.
- Stein W., Modular forms, a computational approach, Graduate Studies in Mathematics, Vol. 79, Amer. Math. Soc., Providence, RI, 2007.
- Vafa C., Two dimensional Yang-Mills, black holes and topological strings, arXiv:hep-th/0406058.
- Weil A., Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143-211.
- Werner F., Vector valued Hecke theory, Ph.D. Thesis, Technische Universität, 2014.
- Westerholt-Raum M., Products of vector valued Eisenstein series, Forum Math. 29 (2017), 157-186, arXiv:1411.3877.
- Zhu Y., Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), 237-302.
|
|