|
SIGMA 15 (2019), 034, 7 pages arXiv:1901.01566
https://doi.org/10.3842/SIGMA.2019.034
Contribution to the Special Issue on Algebraic Methods in Dynamical Systems
Jacobian Conjecture via Differential Galois Theory
Elżbieta Adamus a, Teresa Crespo b and Zbigniew Hajto c
a) Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
b) Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
c) Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland
Received January 23, 2019, in final form May 01, 2019; Published online May 03, 2019
Abstract
We prove that a polynomial map is invertible if and only if some associated differential ring homomorphism is bijective. To this end, we use a theorem of Crespo and Hajto linking the invertibility of polynomial maps with Picard-Vessiot extensions of partial differential fields, the theory of strongly normal extensions as presented by Kovacic and the characterization of Picard-Vessiot extensions in terms of tensor products given by Levelt.
Key words: polynomial automorphisms; Jacobian problem; strongly normal extensions.
pdf (290 kb)
tex (12 kb)
References
- Adamus E., Bogdan P., Crespo T., Hajto Z., An effective study of polynomial maps, J. Algebra Appl. 16 (2017), 1750141, 13 pages, arXiv:1506.01654.
- Adamus E., Bogdan P., Crespo T., Hajto Z., Pascal finite polynomial automorphisms, J. Algebra Appl., to appear.
- Adamus E., Bogdan P., Hajto Z., An effective approach to Picard-Vessiot theory and the Jacobian conjecture, Schedae Informaticae 26 (2017), 49-59, arXiv:1506.01662.
- Bass H., Connell E.H., Wright D., The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 287-330.
- Campbell L.A., A condition for a polynomial map to be invertible, Math. Ann. 205 (1973), 243-248.
- Crespo T., Hajto Z., Picard-Vessiot theory and the Jacobian problem, Israel J. Math. 186 (2011), 401-406.
- de Bondt M., Quasi-translations and counterexamples to the homogeneous dependence problem, Proc. Amer. Math. Soc. 134 (2006), 2849-2856.
- de Bondt M., Homogeneous Keller maps, Ph.D. Thesis, Radboud University Nijmegen, 2007, available at http: webdoc.ubn.ru.nl/mono/b/bondt_m_de/homokema.pdf.
- Keller O.-H., Ganze Cremona-Transformationen, Monatsh. Math. Phys. 47 (1939), 299-306.
- Kovacic J.J., The differential Galois theory of strongly normal extensions, Trans. Amer. Math. Soc. 355 (2003), 4475-4522.
- Kovacic J.J., Geometric characterization of strongly normal extensions, Trans. Amer. Math. Soc. 358 (2006), 4135-4157.
- Levelt A.H.M., Differential Galois theory and tensor products, Indag. Math. (N.S.) 1 (1990), 439-449.
- Smale S., Mathematical problems for the next century, Math. Intelligencer 20 (1998), 7-15.
- van den Essen A., Polynomial automorphisms and the Jacobian conjecture, in Algèbre Non Commutative, Groupes Quantiques et Invariants (Reims, 1995), Sémin. Congr., Vol. 2, Soc. Math. France, Paris, 1997, 55-81.
- van den Essen A., Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, Vol. 190, Birkhäuser Verlag, Basel, 2000.
- Wang S.S.-S., A Jacobian criterion for separability, J. Algebra 65 (1980), 453-494.
- Yagzhev A.V., Keller's problem, Siberian Math. J. 21 (1980), 747-754.
|
|