|
SIGMA 15 (2019), 027, 10 pages arXiv:1810.00145
https://doi.org/10.3842/SIGMA.2019.027
Contribution to the Special Issue on Moonshine and String Theory
A Short Guide to Orbifold Deconstruction
Peter Bantay
Institute for Theoretical Physics, Eötvös Lóránd University, H-1117 Budapest, Pázmány Péter s. 1/A, Hungary
Received September 28, 2018, in final form March 27, 2019; Published online April 09, 2019
Abstract
We study the problem of orbifold deconstruction, i.e., the process of recognizing, using only readily available information, whether a given conformal model can be realized as an orbifold, and the identification of the twist group and the original conformal model.
Key words:
conformal symmetry; orbifold models.
pdf (383 kb)
tex (19 kb)
References
-
Bantay P., Orbifolds and Hopf algebras, Phys. Lett. B 245 (1990), 477-479.
-
Bantay P., Orbifolds, Hopf algebras, and the Moonshine, Lett. Math. Phys. 22 (1991), 187-194.
-
Bantay P., Characters and modular properties of permutation orbifolds, Phys. Lett. B 419 (1998), 175-178, arXiv:hep-th/9708120.
-
Bantay P., Simple current extensions and mapping class group representations, Internat. J. Modern Phys. A 13 (1998), 199-207, arXiv:hep-th/9611124.
-
Bantay P., Permutation orbifolds, Nuclear Phys. B 633 (2002), 365-378, arXiv:hep-th/9910079.
-
Bantay P., Symmetric products, permutation orbifolds and discrete torsion, Lett. Math. Phys. 63 (2003), 209-218, arXiv:hep-th/0004025.
-
Bantay P., Character relations and replication identities in 2d conformal field theory, J. High Energy Phys. 2016 (2016), no. 10, 020, 13 pages, arXiv:1603.05511.
-
Barron K., Dong C., Mason G., Twisted sectors for tensor product vertex operator algebras associated to permutation groups, Comm. Math. Phys. 227 (2002), 349-384, arXiv:math.QA/9803118.
-
Borisov L., Halpern M.B., Schweigert C., Systematic approach to cyclic orbifolds, Internat. J. Modern Phys. A 13 (1998), 125-168, arXiv:hep-th/9701061.
-
Di Francesco P., Mathieu P., Sénéchal D., Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997.
-
Dijkgraaf R., Moore G., Verlinde E., Verlinde H., Elliptic genera of symmetric products and second quantized strings, Comm. Math. Phys. 185 (1997), 197-209, arXiv:hep-th/9608096.
-
Dijkgraaf R., Pasquier V., Roche P., Quasi Hopf algebras, group cohomology and orbifold models, Nuclear Phys. B Proc. Suppl. 18B (1990), 60-72.
-
Dijkgraaf R., Vafa C., Verlinde E., Verlinde H., The operator algebra of orbifold models, Comm. Math. Phys. 123 (1989), 485-526.
-
Dixon L., Friedan D., Martinec E., Shenker S., The conformal field theory of orbifolds, Nuclear Phys. B 282 (1987), 13-73.
-
Dixon L., Harvey J., Vafa C., Witten E., Strings on orbifolds, Nuclear Phys. B 261 (1985), 678-686.
-
Dixon L., Harvey J., Vafa C., Witten E., Strings on orbifolds. II, Nuclear Phys. B 274 (1986), 285-314.
-
Dong C., Li H., Mason G., Modular-invariance of trace functions in orbifold theory and generalized moonshine, Comm. Math. Phys. 214 (2000), 1-56, arXiv:q-alg/9703016.
-
Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Pure and Applied Mathematics, Vol. 134, Academic Press, Inc., Boston, MA, 1988.
-
Fröhlich J., Fuchs J., Runkel I., Schweigert C., Correspondences of ribbon categories, Adv. Math. 199 (2006), 192-329, arXiv:math.CT/0309465.
-
Fuchs J., Klemm A., Schmidt M.G., Orbifolds by cyclic permutations in Gepner type superstrings and in the corresponding Calabi-Yau manifolds, Ann. Physics 214 (1992), 221-257.
-
Fuchs J., Schellekens A.N., Schweigert C., A matrix $S$ for all simple current extensions, Nuclear Phys. B 473 (1996), 323-366, arXiv:hep-th/9601078.
-
Isaacs I.M., Character theory of finite groups, Pure and Applied Mathematics, Vol. 69, Academic Press, New York - London, 1976.
-
Kac V., Vertex algebras for beginners, University Lecture Series, Vol. 10, Amer. Math. Soc., Providence, RI, 1997.
-
Kirillov Jr. A., On $G$-equivariant modular categories, arXiv:math.QA/0401119.
-
Klemm A., Schmidt M.G., Orbifolds by cyclic permutations of tensor product conformal field theories, Phys. Lett. B 245 (1990), 53-58.
-
Lepowsky J., Li H., Introduction to vertex operator algebras and their representations, Progress in Mathematics, Vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004.
-
Lux K., Pahlings H., Representations of groups. A computational approach, Cambridge Studies in Advanced Mathematics, Vol. 124, Cambridge University Press, Cambridge, 2010.
-
Serre J.-P., Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York - Heidelberg, 1977.
-
Zhu Y., Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), 237-302.
|
|