Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 027, 10 pages      arXiv:1810.00145      https://doi.org/10.3842/SIGMA.2019.027
Contribution to the Special Issue on Moonshine and String Theory

A Short Guide to Orbifold Deconstruction

Peter Bantay
Institute for Theoretical Physics, Eötvös Lóránd University, H-1117 Budapest, Pázmány Péter s. 1/A, Hungary

Received September 28, 2018, in final form March 27, 2019; Published online April 09, 2019

Abstract
We study the problem of orbifold deconstruction, i.e., the process of recognizing, using only readily available information, whether a given conformal model can be realized as an orbifold, and the identification of the twist group and the original conformal model.

Key words: conformal symmetry; orbifold models.

pdf (383 kb)   tex (19 kb)

References

  1. Bantay P., Orbifolds and Hopf algebras, Phys. Lett. B 245 (1990), 477-479.
  2. Bantay P., Orbifolds, Hopf algebras, and the Moonshine, Lett. Math. Phys. 22 (1991), 187-194.
  3. Bantay P., Characters and modular properties of permutation orbifolds, Phys. Lett. B 419 (1998), 175-178, arXiv:hep-th/9708120.
  4. Bantay P., Simple current extensions and mapping class group representations, Internat. J. Modern Phys. A 13 (1998), 199-207, arXiv:hep-th/9611124.
  5. Bantay P., Permutation orbifolds, Nuclear Phys. B 633 (2002), 365-378, arXiv:hep-th/9910079.
  6. Bantay P., Symmetric products, permutation orbifolds and discrete torsion, Lett. Math. Phys. 63 (2003), 209-218, arXiv:hep-th/0004025.
  7. Bantay P., Character relations and replication identities in 2d conformal field theory, J. High Energy Phys. 2016 (2016), no. 10, 020, 13 pages, arXiv:1603.05511.
  8. Barron K., Dong C., Mason G., Twisted sectors for tensor product vertex operator algebras associated to permutation groups, Comm. Math. Phys. 227 (2002), 349-384, arXiv:math.QA/9803118.
  9. Borisov L., Halpern M.B., Schweigert C., Systematic approach to cyclic orbifolds, Internat. J. Modern Phys. A 13 (1998), 125-168, arXiv:hep-th/9701061.
  10. Di Francesco P., Mathieu P., Sénéchal D., Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997.
  11. Dijkgraaf R., Moore G., Verlinde E., Verlinde H., Elliptic genera of symmetric products and second quantized strings, Comm. Math. Phys. 185 (1997), 197-209, arXiv:hep-th/9608096.
  12. Dijkgraaf R., Pasquier V., Roche P., Quasi Hopf algebras, group cohomology and orbifold models, Nuclear Phys. B Proc. Suppl. 18B (1990), 60-72.
  13. Dijkgraaf R., Vafa C., Verlinde E., Verlinde H., The operator algebra of orbifold models, Comm. Math. Phys. 123 (1989), 485-526.
  14. Dixon L., Friedan D., Martinec E., Shenker S., The conformal field theory of orbifolds, Nuclear Phys. B 282 (1987), 13-73.
  15. Dixon L., Harvey J., Vafa C., Witten E., Strings on orbifolds, Nuclear Phys. B 261 (1985), 678-686.
  16. Dixon L., Harvey J., Vafa C., Witten E., Strings on orbifolds. II, Nuclear Phys. B 274 (1986), 285-314.
  17. Dong C., Li H., Mason G., Modular-invariance of trace functions in orbifold theory and generalized moonshine, Comm. Math. Phys. 214 (2000), 1-56, arXiv:q-alg/9703016.
  18. Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Pure and Applied Mathematics, Vol. 134, Academic Press, Inc., Boston, MA, 1988.
  19. Fröhlich J., Fuchs J., Runkel I., Schweigert C., Correspondences of ribbon categories, Adv. Math. 199 (2006), 192-329, arXiv:math.CT/0309465.
  20. Fuchs J., Klemm A., Schmidt M.G., Orbifolds by cyclic permutations in Gepner type superstrings and in the corresponding Calabi-Yau manifolds, Ann. Physics 214 (1992), 221-257.
  21. Fuchs J., Schellekens A.N., Schweigert C., A matrix $S$ for all simple current extensions, Nuclear Phys. B 473 (1996), 323-366, arXiv:hep-th/9601078.
  22. Isaacs I.M., Character theory of finite groups, Pure and Applied Mathematics, Vol. 69, Academic Press, New York - London, 1976.
  23. Kac V., Vertex algebras for beginners, University Lecture Series, Vol. 10, Amer. Math. Soc., Providence, RI, 1997.
  24. Kirillov Jr. A., On $G$-equivariant modular categories, arXiv:math.QA/0401119.
  25. Klemm A., Schmidt M.G., Orbifolds by cyclic permutations of tensor product conformal field theories, Phys. Lett. B 245 (1990), 53-58.
  26. Lepowsky J., Li H., Introduction to vertex operator algebras and their representations, Progress in Mathematics, Vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004.
  27. Lux K., Pahlings H., Representations of groups. A computational approach, Cambridge Studies in Advanced Mathematics, Vol. 124, Cambridge University Press, Cambridge, 2010.
  28. Serre J.-P., Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York - Heidelberg, 1977.
  29. Zhu Y., Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), 237-302.

Previous article  Next article   Contents of Volume 15 (2019)