|
SIGMA 15 (2019), 021, 12 pages arXiv:1808.03116
https://doi.org/10.3842/SIGMA.2019.021
Almost Lie Algebroids and Characteristic Classes
Marcela Popescu and Paul Popescu
University of Craiova, Faculty of Sciences, Department of Applied Mathematics, 13, ''Al. I. Cuza'' st., 200585 Craiova, Romania
Received August 10, 2018, in final form March 04, 2019; Published online March 20, 2019
Abstract
Almost Lie algebroids are generalizations of Lie algebroids, when the Jacobiator is not necessary null. A simple example is given, for which a Lie algebroid bracket or a Courant bundle is not possible for the given anchor, but a natural extension of the bundle and the new anchor allows a Lie algebroid bracket. A cohomology and related characteristic classes of an almost Lie algebroid are also constructed. We prove that these characteristic classes are all pull-backs of the characteristic classes of the base space, as in the case of a Lie algebroid.
Key words:
almost Lie algebroid; Jacobiator; characteristic classes.
pdf (323 kb)
tex (18 kb)
References
-
Bruce A.J., Grabowski J., Pre-Courant algebroids, arXiv:1608.01585.
-
Cannas da Silva A., Weinstein A., Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, Vol. 10, Amer. Math. Soc., Providence, RI, 1999.
-
de León M., Marrero J.C., Martín de Diego D., Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics, J. Geom. Mech. 2 (2010), 159-198, arXiv:0801.4358.
-
Fernandes R.L., Lie algebroids, holonomy and characteristic classes, Adv. Math. 170 (2002), 119-179, arXiv:math.DG/0007132.
-
Grabowska K., Grabowski J., Variational calculus with constraints on general algebroids, J. Phys. A: Math. Theor. 41 (2008), 175204, 25 pages, arXiv:0712.2766.
-
Grabowski J., Brackets, Int. J. Geom. Methods Mod. Phys. 10 (2013), 1360001, 45 pages, arXiv:1301.0227.
-
Grabowski J., de León M., Marrero J.C., Martín de Diego D., Nonholonomic constraints: a new viewpoint, J. Math. Phys. 50 (2009), 013520, 17 pages, arXiv:0806.1117.
-
Grabowski J., Jóźwikowski M., Pontryagin maximum principle on almost Lie algebroids, SIAM J. Control Optim. 49 (2011), 1306-1357, arXiv:0905.2767.
-
Grützmann M., Xu X., Cohomology for almost Lie algebroids, arXiv:1206.5466.
-
Husemoller D., Fibre bundles, McGraw-Hill Book Co., New York - London - Sydney, 1966.
-
Ida C., Popescu P., On almost complex Lie algebroids, Mediterr. J. Math. 13 (2016), 803-824, arXiv:1311.2475.
-
Kubarski J., Characteristic classes of regular Lie algebroids - a sketch, Rend. Circ. Mat. Palermo (2) Suppl. (1993), 71-94.
-
Liu Z., Sheng Y., Xu X., The Pontryagin class for pre-Courant algebroids, J. Geom. Phys. 104 (2016), 148-162, arXiv:1205.5898.
-
Mackenzie K.C.H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, Vol. 213, Cambridge University Press, Cambridge, 2005.
-
Maxim-Răileanu L., Cohomology of Lie algebroids, An. Şti. Univ. ''Al. I. Cuza'' Iaşi Secţ. I a Mat. (N.S.) 22 (1976), 197-199.
-
Mishchenko A.S., Nguyen L., Some results on the Mackenzie obstruction for transitive Lie algebroids, arXiv:1708.02784.
-
Popescu M., Popescu P., Geometric objects defined by almost Lie structures, in Lie Algebroids and Related Topics in Differential Geometry (Warsaw, 2000), Banach Center Publ., Vol. 54, Polish Acad. Sci. Inst. Math., Warsaw, 2001, 217-233.
-
Popescu P., Categories of modules with differentials, J. Algebra 185 (1996), 50-73.
-
Popescu P., Poisson structures on almost complex Lie algebroids, Int. J. Geom. Methods Mod. Phys. 11 (2014), 1450069, 22 pages, arXiv:1409.4241.
-
Popescu P., Popescu M., Anchored vector bundles and Lie algebroids, in Lie Algebroids and Related Topics in Differential Geometry (Warsaw, 2000), Banach Center Publ., Vol. 54, Polish Acad. Sci. Inst. Math., Warsaw, 2001, 51-69.
-
Vaisman I., Transitive Courant algebroids, Int. J. Math. Math. Sci. (2005), 1737-1758, arXiv:math.DG/0407399.
|
|