|
SIGMA 15 (2019), 020, 28 pages arXiv:1805.01621
https://doi.org/10.3842/SIGMA.2019.020
Braid Group Action on Affine Yangian
Ryosuke Kodera
Department of Mathematics, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
Received August 09, 2018, in final form February 27, 2019; Published online March 16, 2019
Abstract
We study braid group actions on Yangians associated with symmetrizable Kac-Moody Lie algebras. As an application,
we focus on the affine Yangian of type A and use the action to prove that the image of the evaluation map contains the diagonal Heisenberg algebra inside $\hat{\mathfrak{gl}}_N$.
Key words:
affine Yangian; braid group action; evaluation map.
pdf (459 kb)
tex (26 kb)
References
-
Beck J., Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994), 555-568, arXiv:hep-th/9404165.
-
Bershtein M., Tsymbaliuk A., Homomorphisms between different quantum toroidal and affine Yangian algebras, J. Pure Appl. Algebra 223 (2019), 867-899, arXiv:1512.09109.
-
Ding J., Khoroshkin S., Weyl group extension of quantized current algebras, Transform. Groups 5 (2000), 35-59, arXiv:math.QA/9804139.
-
Guay N., Cherednik algebras and Yangians, Int. Math. Res. Not. 2005 (2005), 3551-3593.
-
Guay N., Affine Yangians and deformed double current algebras in type A, Adv. Math. 211 (2007), 436-484.
-
Guay N., Nakajima H., Wendlandt C., Coproduct for Yangians of affine Kac-Moody algebras, Adv. Math. 338 (2018), 865-911, arXiv:1701.05288.
-
Guay N., Regelskis V., Wendlandt C., Vertex representations for Yangians of Kac-Moody algebras, arXiv:1804.04081.
-
Kirillov A.N., Reshetikhin N., $q$-Weyl group and a multiplicative formula for universal $R$-matrices, Comm. Math. Phys. 134 (1990), 421-431.
-
Kodera R., Affine Yangian action on the Fock space, Publ. Res. Inst. Math. Sci. 55 (2019), 189-234, arXiv:1506.01246.
-
Kodera R., On Guay's evaluation map for affine Yangians, arXiv:1806.09884.
-
Levendorskii S.Z., Soibelman Y.S., Some applications of the quantum Weyl groups, J. Geom. Phys. 7 (1990), 241-254.
-
Lusztig G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447-498.
-
Lusztig G., Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra, J. Amer. Math. Soc. 3 (1990), 257-296.
-
Lusztig G., Quantum groups at roots of $1$, Geom. Dedicata 35 (1990), 89-113.
-
Lusztig G., Introduction to quantum groups, Progress in Mathematics, Vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993.
-
Saito Y., PBW basis of quantized universal enveloping algebras, Publ. Res. Inst. Math. Sci. 30 (1994), 209-232.
-
Uglov D., Symmetric functions and the Yangian decomposition of the Fock and basic modules of the affine Lie algebra $\widehat{\mathfrak{sl}}_N$, in Quantum Many-Body Problems and Representation Theory, MSJ Mem., Vol. 1, Math. Soc. Japan, Tokyo, 1998, 183-241, arXiv:q-alg/9705010.
-
Varagnolo M., Quiver varieties and Yangians, Lett. Math. Phys. 53 (2000), 273-283, arXiv:math.QA/0005277.
|
|