|
SIGMA 15 (2019), 015, 14 pages arXiv:1807.00873
https://doi.org/10.3842/SIGMA.2019.015
A Geometric Approach to the Concept of Extensivity in Thermodynamics
Miguel Ángel García-Ariza
Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72750, Puebla, Pue., Mexico
Received May 24, 2018, in final form February 22, 2019; Published online March 02, 2019
Abstract
This paper presents a rigorous treatment of the concept of extensivity in equilibrium thermodynamics from a geometric point of view. This is achieved by endowing the manifold of equilibrium states of a system with a smooth atlas that is compatible with the pseudogroup of transformations on a vector space that preserve the radial vector field. The resulting geometric structure allows for accurate definitions of extensive differential forms and scaling, and the well-known relationship between both is reproduced. This structure is represented by a global vector field that is locally written as a radial one. The submanifolds that are transversal to it are embedded, and locally defined by extensive functions.
Key words:
homogeneous functions; extensive variables; equilibrium thermodynamics.
pdf (352 kb)
tex (24 kb)
References
-
Anosov D.V., Aranson S.K., Arnold V.I., Bronshtein I.U., Grines V.Z., Il'yashenko Yu.S., Ordinary differential equations and smooth dynamical systems, Springer-Verlag, Berlin, 1997.
-
Belgiorno F., Quasi-homogeneous thermodynamics and black holes, J. Math. Phys. 44 (2003), 1089-1128, arXiv:gr-qc/0210021.
-
Belgiorno F., Homogeneity: from Carathéodory's approach to Gibbs thermodynamics, Nuovo Cimento Soc. Ital. Fis. B 125 (2010), 271-296.
-
Bravetti A., Contact geometry and thermodynamics, Int. J. Geom. Methods Mod. Phys. 16 (2019), 1940003, 51 pages.
-
Bravetti A., Nettel F., Thermodynamic curvature and ensemble nonequivalence, Phys. Rev. D 90 (2014), 044064, 13 pages, arXiv:1208.0399.
-
Brody D.C., Hook D.W., Information geometry in vapour-liquid equilibrium, J. Phys. A: Math. Theor. 42 (2009), 023001, 33 pages.
-
Callen H.B., Thermodynamics and an introduction to thermostatistics, John Wiley & Sons, New York, 1985.
-
Carathéodory C., Untersuchungen über die Grundlagen der Thermodynamik, Math. Ann. 67 (1909), 355-386.
-
Crooks G.E., Measuring thermodynamic length, Phys. Rev. Lett. 99 (2007), 100602, 4 pages, arXiv:0706.0559.
-
Edelen D.G.B., Applied exterior calculus, Dover Publications, Inc., Mineola, NY, 2005.
-
García Ariza M.A., Degenerate Hessian structures on radiant manifolds, Int. J. Geom. Methods Mod. Phys. 15 (2018), 1850087, 15 pages, arXiv:1503.00689.
-
Goldman W., Two examples of affine manifolds, Pacific J. Math. 94 (1981), 327-330.
-
Goldman W., Hirsch M.W., The radiance obstruction and parallel forms on affine manifolds, Trans. Amer. Math. Soc. 286 (1984), 629-649.
-
Hermann R., Geometry, physics, and systems, Pure and Applied Mathematics, Vol. 18, Marcel Dekker, Inc., New York, 1973.
-
Lee J.M., Introduction to smooth manifolds, 2nd ed., Graduate Texts in Mathematics, Vol. 218, Springer, New York, 2013.
-
Mrugała R., Nulton J.D., Schön J.C., Salamon P., Contact structure in thermodynamic theory, Rep. Math. Phys. 29 (1991), 109-121.
-
Preston S., Vargo J., Indefinite metric of R. Mrugała and the geometry of thermodynamical phase space, Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. 86 (2008), 1-12, arXiv:math.DG/0509267.
-
Quevedo H., Geometrothermodynamics, J. Math. Phys. 48 (2007), 013506, 14 pages, arXiv:physics/0604164.
-
Quevedo H., Quevedo M.N., Sánchez A., Homogeneity and thermodynamic identities in geometrothermodynamics, Eur. Phys. J. C 77 (2017), 158, 4 pages, arXiv:1701.06702.
-
Quevedo H., Sánchez A., Taj S., Vázquez A., Curvature as a measure of the thermodynamic interaction, J. Korean Phys. Soc. 57 (2010), 646-650, arXiv:1011.0122.
-
Quevedo H., Sánchez A., Taj S., Vázquez A., Phase transitions in geometrothermodynamics, Gen. Relativity Gravitation 43 (2011), 1153-1165, arXiv:1010.5599.
-
Ruppeiner G., Thermodynamic curvature measures interactions, Amer. J. Phys. 78 (2010), 1170-1180, arXiv:1007.2160.
-
Saurel P., On integrating factors, Ann. of Math. 6 (1905), 185-189.
-
van der Schaft A., Maschke B., Geometry of thermodynamic processes, Entropy 20 (2018), 925, 23 pages, arXiv:1811.04227.
-
von Grudzinski O., Quasihomogeneous distributions, North-Holland Mathematics Studies, Vol. 165, North-Holland Publishing Co., Amsterdam, 1991.
|
|