|
SIGMA 15 (2019), 008, 28 pages arXiv:1807.02734
https://doi.org/10.3842/SIGMA.2019.008
Homogeneous Real (2,3,5) Distributions with Isotropy
Travis Willse
Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
Received August 15, 2018, in final form January 26, 2019; Published online February 04, 2019
Abstract
We classify multiply transitive homogeneous real (2,3,5) distributions up to local diffeomorphism equivalence.
Key words:
(2,3,5) distributions; generic distributions; homogeneous spaces; rolling distributions.
pdf (797 kb)
tex (40 kb)
Maple files (134 kb)
References
-
Agrachev A.A., Rolling balls and octonions, Proc. Steklov Inst. Math. 258 (2007), 13-22, arXiv:math.OC/0611812.
-
An D., Nurowski P., Twistor space for rolling bodies, Comm. Math. Phys. 326 (2014), 393-414, arXiv:1210.3536.
-
An D., Nurowski P., Symmetric (2,3,5) distributions, an interesting ODE of 7th order and Plebański metric, J. Geom. Phys. 126 (2018), 93-100, arXiv:1302.1910.
-
Baez J.C., Huerta J., ${\rm G}_2$ and the rolling ball, Trans. Amer. Math. Soc. 366 (2014), 5257-5293, arXiv:1205.2447.
-
Bor G., Montgomery R., ${\rm G}_2$ and the rolling distribution, Enseign. Math. 55 (2009), 157-196, arXiv:math.DG/0612469.
-
Bryant R.L., Hsu L., Rigidity of integral curves of rank 2 distributions, Invent. Math. 114 (1993), 435-461.
-
Čap A., Sagerschnig K., On Nurowski's conformal structure associated to a generic rank two distribution in dimension five, J. Geom. Phys. 59 (2009), 901-912, arXiv:0710.2208.
-
Čap A., Slovák J., Parabolic geometries. I. Background and general theory, Mathematical Surveys and Monographs, Vol. 154, Amer. Math. Soc., Providence, RI, 2009.
-
Cartan E., Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Sci. École Norm. Sup. (3) 27 (1910), 109-192.
-
Cartan E., Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes, Bull. Soc. Math. France 42 (1914), 12-48.
-
Dave S., Haller S., On 5-manifolds admitting rank two distributions of Cartan type, Trans. Amer. Math. Soc. 371 (2019), 4911-4929, arXiv:1603.09700.
-
Doubrov B., Govorov A., A new example of a generic 2-distribution on a 5-manifold with large symmetry algebra, arXiv:1305.7297.
-
Doubrov B., Govorov A., Unpublished notes.
-
Doubrov B., Holland J., Sparling G., Spacetime and ${\rm G}_2$, arXiv:0901.0543.
-
Doubrov B., Kruglikov B., On the models of submaximal symmetric rank 2 distributions in 5D, Differential Geom. Appl. 35 (2014), 314-322, arXiv:1311.7057.
-
Doubrov B., Medvedev A., The D., Homogeneous Levi non-degenerate hypersurfaces in ${\mathbb C}^3$, arXiv:1711.02389.
-
Doubrov B., Zelenko I., Geometry of rank 2 distributions with nonzero Wilczynski invariants, J. Nonlinear Math. Phys. 21 (2014), 166-187, arXiv:1301.2797.
-
Goursat E., Leçons sur le problème de Pfaff, Librairie Scientifique J. Hermann, Paris, 1922.
-
Gover A.R., Panai R., Willse T., Nearly Kähler geometry and (2,3,5)-distributions via projective holonomy, Indiana Univ. Math. J. 66 (2017), 1351-1416, arXiv:1403.1959.
-
Graham C.R., Willse T., Parallel tractor extension and ambient metrics of holonomy split $G_2$, J. Differential Geom. 92 (2012), 463-505, arXiv:1109.3504.
-
Hammerl M., Sagerschnig K., Conformal structures associated to generic rank 2 distributions on 5-manifolds - characterization and Killing-field decomposition, SIGMA 5 (2009), 081, 29 pages, arXiv:0908.0483.
-
Hammerl M., Sagerschnig K., The twistor spinors of generic 2- and 3-distributions, Ann. Global Anal. Geom. 39 (2011), 403-425, arXiv:1004.3632.
-
Hilbert D., Über den begriff der klasse von differentialgleichungen, Math. Ann. 73 (1912), 95-108.
-
Ishikawa G., Kitagawa Y., Tsuchida A., Yukuno W., Duality of (2,3,5)-distributions and Lagrangian cone structures, arXiv:1808.00149.
-
Ishikawa G., Kitagawa Y., Yukuno W., Duality of singular paths for (2,3,5)-distributions, J. Dyn. Control Syst. 21 (2015), 155-171, arXiv:1308.2501.
-
Kruglikov B., The D., The gap phenomenon in parabolic geometries, J. Reine Angew. Math. 723 (2017), 153-215, arXiv:1303.1307.
-
Leistner T., Nurowski P., Ambient metrics with exceptional holonomy, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), 407-436, arXiv:0904.0186.
-
Leistner T., Nurowski P., Sagerschnig K., New relations between ${\rm G}_2$ geometries in dimensions 5 and 7, Internat. J. Math. 28 (2017), 1750094, 46 pages, arXiv:1601.03979.
-
Nurowski P., Differential equations and conformal structures, J. Geom. Phys. 55 (2005), 19-49, arXiv:math.DG/0406400.
-
Randall M., Flat (2,3,5)-distributions and Chazy's equations, SIGMA 12 (2016), 029, 28 pages, arXiv:1506.02473.
-
Sagerschnig K., Split octonions and generic rank two distributions in dimension five, Arch. Math. (Brno) 42 (2006), 329-339.
-
Sagerschnig K., Weyl structures for generic rank two distributions in dimension five, Ph.D. Thesis, Universität Wien, 2008.
-
Sagerschnig K., Willse T., The almost Einstein operator for (2,3,5) distributions, Arch. Math. (Brno) 53 (2017), 347-370, arXiv:1705.00996.
-
Sagerschnig K., Willse T., The geometry of almost Einstein (2,3,5) distributions, SIGMA 13 (2017), 004, 56 pages, arXiv:1606.01069.
-
Strazzullo F., Symmetry analysis of general rank-3 Pfaffian systems in five variables, Ph.D. Thesis, Utah State University, 2009, available at http://digitalcommons.usu.edu/etd/449/.
-
Willse T., Highly symmetric 2-plane fields on 5-manifolds and 5-dimensional Heisenberg group holonomy, Differential Geom. Appl. 33 (2014), 81-111, arXiv:1302.7163.
-
Willse T., Cartan's incomplete classification and an explicit ambient metric of holonomy ${\rm G}_2^*$, Eur. J. Math. 4 (2018), 622-638, arXiv:1411.7172.
|
|