|
SIGMA 15 (2019), 002, 20 pages arXiv:1806.07553
https://doi.org/10.3842/SIGMA.2019.002
Coadjoint Orbits of Lie Algebras and Cartan Class
Michel Goze a and Elisabeth Remm b
a) Ramm Algebra Center, 4 rue de Cluny, F-68800 Rammersmatt, France
b) Université de Haute-Alsace, IRIMAS EA 7499, Département de Mathématiques, F-68100 Mulhouse, France
Received September 13, 2018, in final form December 31, 2018; Published online January 09, 2019
Abstract
We study the coadjoint orbits of a Lie algebra in terms of Cartan class. In fact, the tangent space to a coadjoint orbit $\mathcal{O}(\alpha)$ at the point $\alpha$ corresponds to the characteristic space associated to the left invariant form $\alpha$ and its dimension is the even part of the Cartan class of $\alpha$. We apply this remark to determine Lie algebras such that all the nontrivial orbits (nonreduced to a point) have the same dimension, in particular when this dimension is $2$ or $4$. We determine also the Lie algebras of dimension $2n$ or $2n+1$ having an orbit of dimension $2n$.
Key words:
Lie algebras; coadjoint representation; contact forms; Frobenius Lie algebras; Cartan class.
pdf (404 kb)
tex (24 kb)
References
-
Adimi H., Makhlouf A., Index of graded filiform and quasi filiform Lie algebras, Filomat 27 (2013), 467-483, arXiv:1212.1650.
-
Ancochéa-Bermúdez J.M., Goze M., Classification des algèbres de Lie nilpotentes complexes de dimension $7$, Arch. Math. (Basel) 52 (1989), 175-185.
-
Arnal D., Cahen M., Ludwig J., Lie groups whose coadjoint orbits are of dimension smaller or equal to two, Lett. Math. Phys. 33 (1995), 183-186.
-
Awane A., Goze M., Pfaffian systems, $k$-symplectic systems, Kluwer Academic Publishers, Dordrecht, 2000.
-
Beltiţă D., Cahen B., Contractions of Lie algebras with 2-dimensional generic coadjoint orbits, Linear Algebra Appl. 466 (2015), 41-63, arXiv:1401.3272.
-
Beltiţă I., Beltiţă D., Coadjoint orbits of stepwise square integrable representations, Proc. Amer. Math. Soc. 144 (2016), 1343-1350, arXiv:1408.1857.
-
Beltiţă I., Beltiţă D., On the isomorphism problem for $C^*$-algebras of nilpotent Lie groups, arXiv:1804.05562.
-
Burde D., Degenerations of 7-dimensional nilpotent Lie algebras, Comm. Algebra 33 (2005), 1259-1277, math.RA/0409275.
-
Cartan E., Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Sci. École Norm. Sup. (3) 27 (1910), 109-192.
-
de Graaf W.A., Classification of solvable Lie algebras, Experiment. Math. 14 (2005), 15-25, math.RA/0404071.
-
Diatta A., Left invariant contact structures on Lie groups, Differential Geom. Appl. 26 (2008), 544-552, math.DG/0403555.
-
Duflo M., Vergne M., Une propriété de la représentation coadjointe d'une algèbre de Lie, C. R Acad. Sci. Paris Sér. A-B 268 (1969), A583-A585.
-
Godbillon C., Géométrie différentielle et mécanique analytique, Hermann, Paris, 1969.
-
Goze M., Algèbres de Lie de dimension finie, Ramm Algebra Center, available at http://ramm-algebra-center.monsite-orange.fr.
-
Goze M., Sur la classe des formes et systèmes invariants à gauche sur un groupe de Lie, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), A499-A502.
-
Goze M., Modèles d'algèbres de Lie frobeniusiennes, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 425-427.
-
Goze M., Bouyakoub A., Sur les algèbres de Lie munies d'une forme symplectique, Rend. Sem. Fac. Sci. Univ. Cagliari 57 (1987), 85-97.
-
Goze M., Haraguchi Y., Sur les $r$-systèmes de contact, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 95-97.
-
Goze M., Remm E., Contact and Frobeniusian forms on Lie groups, Differential Geom. Appl. 35 (2014), 74-94.
-
Goze M., Remm E., $k$-step nilpotent Lie algebras, Georgian Math. J. 22 (2015), 219-234, arXiv:1502.05016.
-
Hatipoglu C., Injective hulls of simple modules over nilpotent Lie color algebras, arXiv:1411.1512.
-
Khuhirun B., Misra K.C., Stitzinger E., On nilpotent Lie algebras of small breadth, J. Algebra 444 (2015), 328-338, arXiv:1410.2778.
-
Kirillov A.A., Elements of the theory of representations, Grundlehren der Mathematischen Wissenschaften, Vol. 220, Springer-Verlag, Berlin - New York, 1976.
-
Ooms A.I., On Frobenius Lie algebras, Comm. Algebra 8 (1980), 13-52.
-
Pinczon G., Ushirobira R., New applications of graded Lie algebras to Lie algebras, generalized Lie algebras, and cohomology, J. Lie Theory 17 (2007), 633-667, math.RT/0507387.
-
Remm E., Breadth and characteristic sequence of nilpotent Lie algebras, Comm. Algebra 45 (2017), 2956-2966, arXiv:1605.06583.
-
Remm E., On filiform Lie algebras. Geometric and algebraic studies, Rev. Roumaine Math. Pures Appl. 63 (2018), 179-209, arXiv:1712.00318.
|
|