Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 14 (2018), 008, 51 pages      arXiv:1704.05805
Contribution to the Special Issue on Symmetries and Integrability of Difference Equations

Darboux Integrability of Trapezoidal $H^{4}$ and $H^{6}$ Families of Lattice Equations II: General Solutions

Giorgio Gubbiotti ab, Christian Scimiterna b and Ravil I. Yamilov c
a) School of Mathematics and Statistics, F07, The University of Sydney, New South Wales 2006, Australia
b) Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre and Sezione INFN di Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
c) Institute of Mathematics, Ufa Scientific Center, Russian Academy of Sciences, 112 Chernyshevsky Str., Ufa 450008, Russia

Received April 26, 2017, in final form January 16, 2018; Published online February 02, 2018

In this paper we construct the general solutions of two families of quad-equations, namely the trapezoidal $H^{4}$ equations and the $H^{6}$ equations. These solutions are obtained exploiting the properties of the first integrals in the Darboux sense, which were derived in [Gubbiotti G., Yamilov R.I., J. Phys. A: Math. Theor. 50 (2017), 345205, 26 pages]. These first integrals are used to reduce the problem to the solution of some linear or linearizable non-autonomous ordinary difference equations which can be formally solved.

Key words: quad-equations; Darboux integrability; exact solutions; CAC.

pdf (750 kb)   tex (50 kb)


  1. Adler V.E., Bobenko A.I., Suris Yu.B., Classification of integrable equations on quad-graphs. The consistency approach, Comm. Math. Phys. 233 (2003), 513-543, nlin.SI/0202024.
  2. Adler V.E., Bobenko A.I., Suris Yu.B., Discrete nonlinear hyperbolic equations: classification of integrable cases, Funct. Anal. Appl. 43 (2009), 3-17, arXiv:0705.1663.
  3. Adler V.E., Startsev S.Ya., On discrete analogues of the Liouville equation, Theoret. and Math. Phys. 121 (1999), 1484-1495, solv-int/9902016.
  4. Bellon M.P., Viallet C.M., Algebraic entropy, Comm. Math. Phys. 204 (1999), 425-437, chao-dyn/9805006.
  5. Bobenko A.I., Suris Yu.B., Integrable systems on quad-graphs, Int. Math. Res. Not. 2002 (2002), 573-611, nlin.SI/0110004.
  6. Bobenko A.I., Suris Yu.B., Discrete differential geometry. Integrable structure, Graduate Studies in Mathematics, Vol. 98, Amer. Math. Soc., Providence, RI, 2008.
  7. Boll R., Classification of 3D consistent quad-equations, J. Nonlinear Math. Phys. 18 (2011), 337-365, arXiv:1009.4007.
  8. Boll R., Corrigendum: Classification of 3D consistent quad-equations, J. Nonlinear Math. Phys. 19 (2012), 1292001, 3 pages.
  9. Boll R., Classification and Lagrangian structure of 3D consistent quad-equations, Ph.D. Thesis, Technische Universität Berlin, 2012.
  10. Bridgman T., Hereman W., Quispel G.R.W., van der Kamp P.H., Symbolic computation of Lax pairs of partial difference equations using consistency around the cube, Found. Comput. Math. 13 (2013), 517-544, arXiv:1308.5473.
  11. Butler S., Hay M., Simple identification of fake Lax pairs, arXiv:1311.2406.
  12. Butler S., Hay M., Two definitions of fake Lax pairs, AIP Conf. Proc. 1648 (2015), 180006, 5 pages.
  13. Calogero F., Degasperis A., Spectral transform and solitons. Vol. I. Tools to solve and investigate nonlinear evolution equations, Studies in Mathematics and its Applications, Vol. 13, North-Holland Publishing Co., Amsterdam - New York, 1982.
  14. Calogero F., Nucci M.C., Lax pairs galore, J. Math. Phys. 32 (1991), 72-74.
  15. Doliwa A., Santini P.M., Multidimensional quadrilateral lattices are integrable, Phys. Lett. A 233 (1997), 365-372, solv-int/9612007.
  16. Falqui G., Viallet C.M., Singularity, complexity, and quasi-integrability of rational mappings, Comm. Math. Phys. 154 (1993), 111-125, hep-th/9212105.
  17. Garifullin R.N., Yamilov R.I., Generalized symmetry classification of discrete equations of a class depending on twelve parameters, J. Phys. A: Math. Theor. 45 (2012), 345205, 23 pages, arXiv:1203.4369.
  18. Garifullin R.N., Yamilov R.I., Integrable discrete nonautonomous quad-equations as Bäcklund auto-transformations for known Volterra and Toda type semidiscrete equations, J. Phys. Conf. Ser. 621 (2015), 012005, 18 pages, arXiv:1405.1835.
  19. Grammaticos B., Ramani A., Viallet C.M., Solvable chaos, Phys. Lett. A 336 (2005), 152-158, math-ph/0409081.
  20. Gubbiotti G., Scimiterna C., Reconstructing a lattice equation: a non-autonomous approach to the Hietarinta equation, SIGMA 14 (2018), 004, 21 pages, arXiv:1705.00298.
  21. Gubbiotti G., Scimiterna C., Levi D., Algebraic entropy, symmetries and linearization of quad equations consistent on the cube, J. Nonlinear Math. Phys. 23 (2016), 507-543, arXiv:1603.07930.
  22. Gubbiotti G., Scimiterna C., Levi D., Linearizability and a fake Lax pair for a nonlinear nonautonomous quad-graph equation consistent around the cube, Theoret. and Math. Phys. 189 (2016), 1459-–1471.
  23. Gubbiotti G., Scimiterna C., Levi D., On partial differential and difference equations with symmetries depending on arbitrary functions, Acta Polytechnica 56 (2016), 193-201, arXiv:1512.01967.
  24. Gubbiotti G., Scimiterna C., Levi D., The non-autonomous YdKN equation and generalized symmetries of Boll equations, J. Math. Phys. 58 (2017), 053507, 18 pages, arXiv:1510.07175.
  25. Gubbiotti G., Scimiterna C., Levi D., A two-periodic generalization of the $Q_{\rm V}$ equation, J. Integrable Syst. 2 (2017), xyx004, 13 pages.
  26. Gubbiotti G., Yamilov R.I., Darboux integrability of trapezoidal $H^4$ and $H^4$ families of lattice equations I: First integrals, J. Phys. A: Math. Theor. 50 (2017), 345205, 26 pages, arXiv:1608.03506.
  27. Habibullin I.T., Characteristic algebras of fully discrete hyperbolic type equations, SIGMA 1 (2005), 023, 9 pages, nlin.SI/0506027.
  28. Hay M., A completeness study on discrete, $2\times2$ Lax pairs, J. Math. Phys. 50 (2009), 103516, 29 pages, arXiv:0806.3940.
  29. Hay M., A completeness study on certain $2\times 2$ Lax pairs including zero terms, SIGMA 7 (2011), 089, 12 pages, arXiv:1104.0084.
  30. Hietarinta J., A new two-dimensional lattice model that is 'consistent around a cube', J. Phys. A: Math. Gen. 37 (2004), L67-L73, nlin.SI/0311034.
  31. Hietarinta J., Searching for CAC-maps, J. Nonlinear Math. Phys. 12 (2005), suppl. 2, 223-230.
  32. Hietarinta J., Definitions and predictions of integrability for difference equations, in Symmetries and Integrability of Difference Equations (Beijing, 2009), London Math. Soc. Lecture Note Ser., Vol. 381, Editors D. Levi, P. Olver, Z. Thomova, P. Winternitz, Cambridge University Press, Cambridge, 2011, 83-114.
  33. Hietarinta J., Joshi N., Nijhoff F.W., Discrete systems and integrability, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2016.
  34. Hietarinta J., Viallet C.M., Searching for integrable lattice maps using factorization, J. Phys. A: Math. Theor. 40 (2007), 12629-12643, arXiv:0705.1903.
  35. Hietarinta J., Viallet C.M., Weak Lax pairs for lattice equations, Nonlinearity 25 (2012), 1955-1966, arXiv:1105.3329.
  36. Liouville J., Sur l'equation aux différences partielles $\partial^2 \log \lambda /\partial u\partial v \pm \lambda /(aa^2)=0$, J. Math. Pures Appl. 18 (1853), 71-72.
  37. Nijhoff F.W., Lax pair for the Adler (lattice Krichever-Novikov) system, Phys. Lett. A 297 (2002), 49-58, nlin.SI/0110027.
  38. Nijhoff F.W., Walker A.J., The discrete and continuous Painlevé VI hierarchy and the Garnier systems, Glasg. Math. J. 43A (2001), 109-123, nlin.SI/0001054.
  39. Papageorgiou V.G., Nijhoff F.W., Capel H.W., Integrable mappings and nonlinear integrable lattice equations, Phys. Lett. A 147 (1990), 106-114.
  40. Quispel G.R.W., Capel H.W., Papageorgiou V.G., Nijhoff F.W., Integrable mappings derived from soliton equations, Phys. A 173 (1991), 243-266.
  41. Roberts J.A.G., Tran D.T., Algebraic entropy of (integrable) lattice equations and their reductions, arXiv:1703.01069.
  42. Viallet C.M., Algebraic entropy for lattice equations, math-ph/0609043.
  43. Viallet C.M., Integrable lattice maps: $Q_{\rm V}$, a rational version of $Q_4$, Glasg. Math. J. 51 (2009), 157-163, arXiv:0802.0294.
  44. Xenitidis P.D., Papageorgiou V.G., Symmetries and integrability of discrete equations defined on a black-white lattice, J. Phys. A: Math. Theor. 42 (2009), 454025, 13 pages, arXiv:0903.3152.
  45. Yamilov R., Symmetries as integrability criteria for differential difference equations, J. Phys. A: Math. Gen. 39 (2006), R541-R623.
  46. Zhiber A.V., Sokolov V.V., Exactly integrable hyperbolic equations of Liouville type, Russian Math. Surveys 56 (2001), no. 1, 61-101.

Previous article  Next article   Contents of Volume 14 (2018)