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Abstract. Considering a certain interpolation problem, we derive a series of elliptic differen-
ce isomonodromic systems together with their Lax forms. These systems give a multivariate
extension of the elliptic Painlevé equation.
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1 Introduction

There is a simple way to derive isomonodromic equations by studying suitable Padé approxi-
mation or interpretation problem. It has been applied various examples both continuous and
discrete (see [2, 14] and references therein). The aim of this paper is to apply this method to cer-
tain elliptic interpolation problems and derive a multivariate extension of the elliptic-difference1

Painlevé equation [5, 11]. This work is a natural generalization of [4].

Recently, there have been some progress in multivariate elliptic isomonodromic systems.
In [7, 8], an elliptic analog of the Garnier system is constructed. In [2], an elliptic deformation
of q-Garnier system is suggested from a geometric points of view. In [3], certain elliptic analog of
Garnier system is obtained from viewpoint of lattice equations. Moreover, a general framework
of elliptic isomonodromic systems is established in [9]. For the equations obtained in this paper,
the proper isomonodromic interpretation and the relation to the constructions mentioned above
are not clear so far. However, since the equations obtained in this paper are quite explicit, we
expect that they will give a clue to elucidate the multivariate elliptic isomonodromic systems.

The paper is organized as follows. In Section 2, we set up our interpolation problem (2.2):

ψ(z) ∼ P (z)
Q(z) . In Section 3, we derive two contiguous relations satisfied by the interpolants P (z)

and ψ(z)Q(z) (Theorem 3.3). These relations play the role of the Lax pair for the isomonodromic
system. In Section 4, we analyze the Lax equations and derive the isomonodromic system as
the necessary and sufficient conditions for the compatibility (Theorem 4.2). The proof becomes
quite simple due to the use of the contiguous type Lax pair.

2 Set up of the interpolation problem

Fix p, q ∈ C such that |p|, |q| < 1. The elliptic Gamma function Γp,q(z) [10] and the theta
function [z] (of base p) are defined as

Γp,q(z) =
(pq/z; p, q)∞

(z; p, q)∞
=
∏
i,j≥0

1− z−1pi+1qj+1

1− zpiqj
,

This paper is a contribution to the Special Issue on Elliptic Hypergeometric Functions and Their Applications.
The full collection is available at https://www.emis.de/journals/SIGMA/EHF2017.html

1The q-difference limit of the obtained system is expected to be the one considered in [6].
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[z] = (z, p/z; p)∞ =
∞∏
i=0

(
1− xpi

)(
1− x−1pi+1

)
.

They satisfy the following fundamental relations:

Γp,q(qz) = [z]Γp,q(z), Γp,q(z/q) = [z/q]−1Γp,q(z),

[pz] = −z−1[z], [z] = −z[1/z], [z] = [p/z].

We also use the following notations:

[z]s =
Γp,q(q

sz)

Γp,q(z)
, [x1, . . . , xl]s = [x1]s · · · [xl]s.

In particular, [z]s =
s−1∏
i=0

[qiz] for s ∈ Z≥0.

Fix N ∈ Z≥2. Let k, u1, . . . , u2N be complex parameters satisfying a constraint
2N∏
i=1

ui = kN ,

and define a function ψ(z) as2

ψ(z) =
2N∏
i=1

Γp,q(ui/z)

Γp,q(k/uiz)
.

We also define a shift T : x 7→ x of parameters x = k, ui as

k = k/q, ui =

{
ui, 1 ≤ i ≤ N,
ui/q, N < i ≤ 2N.

This action is naturally extended to any functions f = f(k, ui) of parameters by f = f(k, ui).
We put

µ1(z) =
ψ(z/q)

ψ(z)
=

2N∏
i=1

[ui/z]

[k/uiz]
, µ2(z) =

ψ(z/q)

ψ(z)
=

N∏
i=1

[ui/z]

[k/uN+iz]
,

µ3(z) =
ψ(z)

ψ(z)
=

N∏
i=1

[k/quiz]

[uN+i/qz]
.

These functions are p-periodic: f(pz) = f(z), and satisfy

µ1(k/z) = µ1(z)
−1, µ3(k/qz) = µ2(z), (2.1)

due to the constraint
2N∏
i=1

ui = kN .

Let f(z) be an elliptic function of degree 2d such that p-periodic and h-symmetric: f(h/z) =

f(z). Any such function can be written as f(z) = θnum(z)
θden(z)

, where θ∗(z) (∗ = num,den) are h-

symmetric entire function with common quasi periodicity: θ∗(pz) = (h/pz2)dθ∗(z). The totality
of such functions f(z) form a linear space of dimension d+ 1.

For m,n ∈ Z≥0, consider the interpolation problem3

ψ(q−s) =
P (q−s)

Q(q−s)
, s = 0, 1, . . . , N = m+ n, (2.2)

2Throughout the paper, any expression a · · · b/c · · · d means the long fraction a···b
c···d .

3This is a kind of PPZ (prescribed poles and zeros) interpolation [15].
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where P (z) (resp. Q(z)) are k/q-symmetric and p-periodic elliptic functions of order 2m (resp.
2n), with specified denominators Pden(z) (resp. Qden(z)). For convenience, we will choose
them as

Pden(z) = [u1/z, u1qz/k]m, Qden(z) = [k/u2z, qz/u2]n.

3 Derivation of the contiguous relations

Let P (z), Q(z) be solutions for the interpolation problem (2.2). We will compute the contiguous
relations satisfied by the functions w(z) = P (z), ψ(z)Q(z):

L2 : D3(z/q)w(z)−D2(z)w(z/q) +D1(z)w(z/q) = 0,

L3 : D1(z)w(z)−D2(z)w(z) +D3(z)w(z/q) = 0. (3.1)

The coefficients are determined by the Casorati determinants as

D1(z) = |u(z),u(z/q)|, D2(z) = |u(z),u(z/q)|,

D3(z) = |u(z),u(z)|, u(z) =

[
P (z)

ψ(z)Q(z)

]
.

Certain explicit formulas for P (z), Q(z) are available (see Remark 3.4), however, we do not need
them for the computations here.

Lemma 3.1. We have

D1(z) = ψ(z)
[z, k/z]m+n

[
k/z2

]
X1,den(z)

F (z),

where X1,den(z) is given in equation (3.3) below, and F (z) is a k-symmetric p-quasi periodic
entire function of degree 2N − 4. Explicitly, we have

F (z) = Cz

N−2∏
i=1

[z/λi, k/zλi], (3.2)

where C, λ1, . . . , λN−2 are some constants independent of z.

Proof. We put

X1(z) =
D1(z)

ψ(z)
= µ1(z)P (z)Q(z/q)− P (z/q)Q(z).

(i) Obviously X1(z) is a p-periodic function. Due to the cancellations of the factors [u1/z][u2/z],
the denominator X1,den(z) of X1(z) consists of 2(N + m + n) theta factors, hence X1(z) is of
degree 2(N +m+ n). We choose the normalization of X1,den(z) as

X1,den(z) =

(
N∏
i=1

[k/uiz][uN+iz/k]

)
[qu1/z, qu1z/k]m[qk/u2z, qz/u2]n, (3.3)

so that X1,den(k/z) = µ1(z)
−1X1,den(z).

(ii) Due to the k/q-symmetry of P (z), Q(z) and equation (2.1), we have

X1(k/z) = µ1(k/z)P (k/z)Q(k/qz)− P (k/qz)Q(k/z)

= µ1(z)
−1P (z/q)Q(z)− P (z/q)Q(z) = −µ1(z)−1X1(z).
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Combining this and X1,den(k/z) = µ1(z)
−1X1,den(z), we see that the numerator X1,num(z) is

k-antisymmetric: X1,num(k/z) = −X1,num(z).
(iii) By the Padé interpolation condition, we have D1(q

−s) = 0 for s = 0, 1, . . . ,m + n − 1.
Hence X1,num(z) is divisible by [z, k/z]m+n

[
k/z2

]
.

From (i)–(iii), one obtain the desired result. �

Lemma 3.2. We have

D2(z) = ψ(z)
[z]m+n[k/qz]m+n+1

X2,den(z)
G(z),

D3(z) = ψ(z)
[z]m+n+1[k/qz]m+n

X3,den(z)
G(k/qz),

where X2,den(z), X3,den(z) is given in equation (3.5) below, C ′ is a constant, and G(z) is a p-
quasi periodic function of degree N − 1 which can be written as

G(z) = C ′z

N−1∏
i=1

[z/ξi],
N−1∏
i=1

ξi =
kqn−1

N∏
i=1

ui

. (3.4)

Proof. We put

X2(z) =
D2(z)

ψ(z)
= µ2(z)P (z)Q(z/q)− P (z/q)Q(z),

X3(x) =
D3(z)

ψ(z)
= µ3(z)P (z)Q(z)− P (z)Q(z).

(i) Obviously X2(z), X3(z) are p-periodic elliptic functions. The denominators can be written
as

X2,den(z) =

2N∏
i=N+1

[uiz/k][qu1/z, qu1z/k]m[qz/u2, k/u2z]n,

X3,den(z) =
2N∏

i=N+1

[ui/qz]
[
u1/z, q

2u1z/k
]
m

[qz/u2, k/u2z]n. (3.5)

Hence X2(z), X3(z) are both of degree N + 2m+ 2n. We note that X3,den(k/qz) = X2,den(z).
(ii) From P (k/qz) = P (z), we have P (k/qz) = P (z/q) and similarly we have Q(k/qz) = Q(z),

Q(k/qz) = Q(z/q). Using these relations and equation (2.1), we have

X3(k/qz) = µ3(k/qz)P (k/qz)Q(k/qz)− P (k/qz)Q(k/qz)

= µ2(z)P (z)Q(z/q)− P (z/q)Q(z) = X2(z).

(iii) Due to the Padé interpolation condition we have D2(q
−s) = 0 for s = 0, . . . ,m + n − 1

and D3(q
−s) = 0 for s = 0, . . . ,m+ n.

From (i)–(iii), we obtain the desired results. �

Theorem 3.3. By a suitable gauge transformation y(z) = g(z)w(z), the L2, L3 equations take
the following forms

L2 : F (z)
[
k/z2

]
y(z/q)−G(z)A(k/z)y(z/q) +G(k/z)A(z)y(z) = 0,

L3 : F (z)
[
k/qz2

]
y(z)−G(z)B(k/qz)y(z) +G(k/qz)B(z)y(z/q) = 0, (3.6)
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where F (z), G(z) are given by equations (3.2), (3.4), and

A(z) =
N+1∏
i=1

[z/ai], {ai}N+1
i=1 =

{
u1q

m, u2q
−n, u3, . . . , uN , q

}
,

B(z) =
N+1∏
i=1

[z/bi], {bi}N+1
i=1 =

{
k/uN+1, . . . , k/u2N , q

−m−n}.
Proof. First, using Lemmas 3.1 and 3.2, we rewrite the equations (3.1) as

L2 : F (z)
[
k/z2

]
w(z/q)−G(z)[k/qz]

[kqn/u2z]

[k/u2z]

N∏
i=1

[k/uiz]w(z/q)

+G(k/z)[z/q]
[zqn/u2]

[z/u2]

N∏
i=1

[z/ui]w(z) = 0,

L3 :
N∏
i=1

[uN+i/q]

[k/qui]
F (z)

[
k/qz2

]
w(z)−G(z)

[
kqm+n−1/z

] [zu1qm+1z/k]

[zu1qz/k]

2N∏
i=N+1

[ui/qz]w(z)

+G(k/qz)
[
qm+nz

]
qm

[z/u1q
m]

[z/u1]

2N∏
i=N+1

[zui/k]w(z/q) = 0.

Then, by the gauge transformation y(z) = [u1/z, u1qz/k]mw(z), we obtain

L2 : q−mF (z)
[
k/z2

]
y(z/q)−G(z)A(k/z)y(z/q) +G(k/z)A(z)y(z) = 0,

L3 :
N∏
i=1

[uN+i/q]

[k/qui]
F (z)

[
k/qz2

]
y(z)−G(z)B(k/qz)y(z) +G(k/qz)B(z)y(z/q) = 0.

The additional factors in front of F (z), F (z) can be absorbed into the normalization of F (z),
F (z) by a z-independent gauge transformation of y(z). Hence, we arrive at the desired re-
sults (3.6). �

Remark 3.4. An explicit expression of the Padé interpolants P (z), Q(z) is given by the deter-
minant as follows

P (z) = c

∣∣∣∣∣∣∣∣∣
µP0,0 · · · µP0,m

...
. . .

...
µPm−1,0 · · · µPm−1,m
ψ0(z) · · · ψm(z)

∣∣∣∣∣∣∣∣∣ , Q(z) = c

∣∣∣∣∣∣∣∣∣
µQ0,0 · · · µQ0,n

...
. . .

...

µQn−1,0 · · · µQn−1,n
φ0(z) · · · φn(z)

∣∣∣∣∣∣∣∣∣ ,
where c is a constant and

ψj(z) =
[u1, qu1/k, k/u3z, qz/u3]j
[u1/z, qu1/z, k/u3, q/u3]j

, φj(z) =
[k/u2, q/u2, u4/z, qu4z/k]j
[k/u2z, qz/u2, u4, qu4/k]j

,

µPi,j = 2N+6V2N+5

(
k

q
, q−m−n,

k

u1
q−j ,

k

u2
qm+n−i−1,

k

u3
qj ,

k

u4
qi,

k

u5
, . . . ,

k

u2N
; q

)
,

µQi,j = 2N+6V2N+5

(
k

q
, q−m−n, u1q

m+n−i−1, u2q
−j , u3q

i, u4q
j , u5, . . . , u2N ; q

)
,

and nVn−1 is the elliptic hypergeometric series [12, 15] defined by

n+5Vn+4(a0; a1, . . . , an; z) =

∞∑
s=0

[
a0q

2s
]

[a0]

n∏
i=0

[ai]s
[qa0/ai]s

zs. (3.7)

The proof is completely the same as the case N = 3 [4]. Application of the explicit formulae to
the special solution of the isomonodromic systems will be considered elsewhere.
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4 Compatibility conditions

In this section, we consider the equation (3.6) forgetting about the connection with the interpo-
lation problem. Namely, we restart with the following equations

L2 : F (z)
[
k/z2

]
y(z/q)−G(z)A(k/z)y(z/q) +G(k/z)A(z)y(z) = 0,

L3 : F (z)
[
k/qz2

]
y(z)−G(z)B(k/qz)y(z) +G(k/qz)B(z)y(z/q) = 0,

F (z) = Cz

N−2∏
i=1

[z/λi, k/zλi], G(z) = z

N−1∏
i=1

[z/ξi],

A(z) =
N+1∏
i=1

[z/ai], B(z) =
N+1∏
i=1

[z/bi], (4.1)

where {ai, bi}N+1
i=1 , k, ` are parameters and C, {λi}N−2i=1 , {ξi}N−1i=1 are variables such as

ai = ai, bi = bi, k = k/q, ` = q`, k2`2 = q

N+1∏
i=1

aibi,

N−1∏
i=1

ξi = `.

Proposition 4.1. As the necessary conditions for the compatibility, the pair of equations L2, L3

in (4.1) gives the following equations for λi, C and ξi = T−1(ξi). Namely

F (z)F (z)
[
k/z2

][
k/qz2

]
= G(k/z)G(k/qz)U(z), (4.2)

for z = ξi (1 ≤ i ≤ N − 1), and

G(z)G(z)

G(k/z)G(k/z)
=

U(z)

U(k/z)
, (4.3)

for z = λi (1 ≤ i ≤ N − 2), where U(z) = A(z)B(z).

Proof. When z = ξi, the terms in L2, L3 with coefficient G(z) vanishes, and we obtain equa-
tion (4.2). Similarly, putting z = λi in L2 and

L3 : F (z)
[
k/z2

]
y(z)−G(z)B(k/z)y(z) +G(k/z)B(z)y(z/q) = 0,

the terms with coefficient F (z) vanishes, and we have equation (4.3). �

The equations (4.2), (4.3) give the evolution equation for 2(N − 2) variables {λi, ξi}N−2i=1 . In
N = 3 case, it can be written in a symmetric way as

ξ21
ξ22

2∏
j=1

[ξ1/λj ][ξ1/λj ]

[ξ2/λj ][ξ2/λj ]
=
U(ξ1)

U(ξ2)
,

λ21
λ22

2∏
j=1

[λ1/ξj ][λ1/ξj ]

[λ2/ξj ][λ2/ξj ]
=
U(λ1)

U(λ2)
,

where λ1λ2 = k, ξ1ξ2 = `. This is the elliptic Painlevé equation [5, 11] in factorized form [1, 4].
Its Lax pair is obtained in [13], and the higher-order analogues are also given in [8].

Theorem 4.2. The equations (4.2), (4.3) are sufficient for the compatibility of the Lax pair (4.1).

Proof. Combining the equations L2 and L3 as the following diagrams:

y( zq ) y(z)

y( zq ) y(z) y(qz)

@
@
@
@
@
@

@
@
@
@
@
@

L2(z)

L3(z)
@
@
@
@

@
@

L2(qz)

L1:

y( zq ) y(z) y(qz)

y(z) y(qz)

@
@
@

@
@
@

@
@
@

@
@
@

L3(qz)L3(z)
@

@
@
@

@
@

L2(qz)

L̃1:
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we obtain the following three term relations for y(z) or y(z),

L1 : A(k/z)B(z)F (qz)
[
k/q2z2

]
y(z/q)−R(z)y(z) +A(qz)B(k/qz)F (z)

[
k/z2

]
y(qz) = 0,

L̃1 : A(k/qz)B(z)F (qz)
[
k/q3z2

]
y(z/q)− R̃(z)y(z)

+A(qz)B
(
k/q2z

)
F (z)

[
k/qz2

]
y(qz) = 0, (4.4)

where

R(z) =
U(z)F (qz)G

(
k
z

)[
k

q2z2

]
G(z)

+
U
(
k
qz

)
F (z)G(qz)

[
k
z2

]
G
(
k
qz

)
−
F (z)F (qz)F (z)

[
k
z2

][
k
qz2

][
k

q2z2

]
G(z)G

(
k
qz

) ,

R̃(z) =
U(qz)F (z)G

(
k
q2z

)[
k

q2z2

]
G(qz)

+
U
(
k
qz

)
F (qz)G(z)

[
k

q3z2

]
G
(
k
qz

)
−
F (z)F (qz)F (z)

[
k
z2

][
k
qz2

][
k

q2z2

]
G(z)G

(
k
qz

) . (4.5)

Then the compatibility means the consistency between triangle relations on the following 7
points of the 3× 3 grid: @

@
@

@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

which is equivalently written as L1 = L̃1. It is easy to check the condition L1 = L̃1 for the
coefficients of y(qz), y(z/q) and y(qz), y(z/q). So the problem is to show R(z) = R̃(z) under
the equations (4.2), (4.3).

For L1 given in equation (4.4), (4.5), one can check the following properties:

(i) R(z) is holomorphic due to equation (4.2), and it is a degree 4N + 2 theta function of
base p.

(ii) R(k/qz) = −R(z), and hence R(z) is divisible by
[
k/qz2

]
.

(iii) The equation L1 holds when{[
k/z2

]
= 0, y(z) = y(z/q)

}
or

{[
k/q2z2

]
= 0, y(z) = y(qz)

}
or

{F (z) = 0, A(z)G(k/z)y(z) = A(k/z)G(z)y(z/q)} or

{F (qz) = 0, A(qz)G(k/qz)y(qz) = A(k/qz)G(qz)y(z)}.

Moreover, once the coefficients of y(qz), y(z/q) in L1 are fixed as in equation (4.4), the properties
(i)–(iii) determine the coefficient R(z) uniquely.

Similarly, R̃(z) in equation (4.4) is characterized by the following conditions:

(i) R̃(z) is a degree 4N + 2 theta function of base p.

(ii) R̃
(
k/q2z

)
= −R̃(z), and hence R̃(z) is divisible by

[
k/q2z2

]
.
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(iii) The equation L̃1 holds when{[
k/qz2

]
= 0, y(z) = y(z/q)

}
or

{[
k/q3z2

]
= 0, y(z) = y(qz)

}
or{

F (z) = 0, A(z)G(k/qz)y(z) = A(k/qz)G(z)y(z/q)
}

or{
F (qz) = 0, A(qz)G

(
k/q2z

)
y(qz) = A(k/q2z)G(qz)y(z)

}
,

where we used the equation (4.3) to rewrite the last two equations.

These characteristic properties show that R(z) = R̃(z), hence L1 = L̃1 as desired. �
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