|
SIGMA 13 (2017), 062, 19 pages arXiv:1701.05895
https://doi.org/10.3842/SIGMA.2017.062
Part III, Free Actions of Compact Quantum Groups on ${\rm C}^*$-Algebras
Kay Schwieger a and Stefan Wagner b
a) Iteratec GmbH, Stuttgart, Germany
b) Blekinge Tekniska Högskola, Sweden
Received April 05, 2017, in final form August 05, 2017; Published online August 09, 2017
Abstract
We study and classify free actions of compact quantum groups on unital ${\rm C}^*$-algebras in terms of generalized factor systems. Moreover, we use these factor systems to show that all finite coverings of irrational rotation ${\rm C}^*$-algebras are cleft.
Key words:
free action; ${\rm C}^*$-algebra; quantum group; factor system; finite covering.
pdf (417 kb)
tex (29 kb)
References
-
Albeverio S., Høegh-Krohn R., Ergodic actions by compact groups on $C^*$-algebras, Math. Z. 174 (1980), 1-17.
-
Banica T., Fusion rules for representations of compact quantum groups, Exposition. Math. 17 (1999), 313-337, math.QA/9811039.
-
Baum P.F., De Commer K., Hajac P.M., Free actions of compact quantum group on unital ${\rm C}^*$-algebras, arXiv:1304.2812.
-
Bichon J., De Rijdt A., Vaes S., Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), 703-728, math.QA/0502018.
-
Connes A., Landi G., Noncommutative manifolds, the instanton algebra and isospectral deformations, Comm. Math. Phys. 221 (2001), 141-159, math.QA/0011194.
-
De Commer K., Actions of compact quantum groups, arXiv:1604.00159.
-
De Commer K., Yamashita M., A construction of finite index ${\rm C}^*$-algebra inclusions from free actions of compact quantum groups, Publ. Res. Inst. Math. Sci. 49 (2013), 709-735, arXiv:1201.4022.
-
De Commer K., Yamashita M., Tannaka-Krein duality for compact quantum homogeneous spaces. I. General theory, Theory Appl. Categ. 28 (2013), no. 31, 1099-1138, arXiv:1211.6552.
-
Echterhoff S., Nest R., Oyono-Oyono H., Principal non-commutative torus bundles, Proc. Lond. Math. Soc. 99 (2009), 1-31, arXiv:0810.0111.
-
Ellwood D.A., A new characterisation of principal actions, J. Funct. Anal. 173 (2000), 49-60.
-
Gabriel O., Fixed points of compact quantum groups actions on Cuntz algebras, Ann. Henri Poincaré 15 (2014), 1013-1036, arXiv:1210.5630.
-
Gabriel O., Weber M., Fixed point algebras for easy quantum groups, SIGMA 12 (2016), 097, 21 pages, arXiv:1606.00569.
-
Gootman E.C., Lazar A.J., Peligrad C., Spectra for compact group actions, J. Operator Theory 31 (1994), 381-399.
-
Konishi Y., Nagisa M., Watatani Y., Some remarks on actions of compact matrix quantum groups on $C^*$-algebras, Pacific J. Math. 153 (1992), 119-127.
-
Landi G., van Suijlekom W., Principal fibrations from noncommutative spheres, Comm. Math. Phys. 260 (2005), 203-225, math.QA/0410077.
-
Marciniak M., Actions of compact quantum groups on $C^*$-algebras, Proc. Amer. Math. Soc. 126 (1998), 607-616.
-
Neshveyev S., Duality theory for nonergodic actions, Münster J. Math. 7 (2014), 413-437, arXiv:1303.6207.
-
Neshveyev S., Tuset L., Compact quantum groups and their representation categories, Cours Spécialisés, Vol. 20, Société Mathématique de France, Paris, 2013.
-
Olesen D., Pedersen G.K., Takesaki M., Ergodic actions of compact abelian groups, J. Operator Theory 3 (1980), 237-269.
-
Peligrad C., Locally compact group actions on $C^*$-algebras and compact subgroups, J. Funct. Anal. 76 (1988), 126-139.
-
Phillips N.C., Equivariant $K$-theory and freeness of group actions on $C^*$-algebras, Lecture Notes in Math., Vol. 1274, Springer-Verlag, Berlin, 1987.
-
Phillips N.C., Freeness of actions of finite groups on $C^*$-algebras, in Operator Structures and Dynamical Systems, Contemp. Math., Vol. 503, Amer. Math. Soc., Providence, RI, 2009, 217-257.
-
Podleś P., Symmetries of quantum spaces. Subgroups and quotient spaces of quantum ${\rm SU}(2)$ and ${\rm SO}(3)$ groups, Comm. Math. Phys. 170 (1995), 1-20, hep-th/9402069.
-
Rieffel M.A., The cancellation theorem for projective modules over irrational rotation $C^*$-algebras, Proc. London Math. Soc. 47 (1983), 285-302.
-
Rieffel M.A., Nonstable $K$-theory and noncommutative tori, in Operator Algebras and Mathematical Physics (Iowa City, Iowa, 1985), Contemp. Math., Vol. 62, Amer. Math. Soc., Providence, RI, 1987, 267-279.
-
Rieffel M.A., Proper actions of groups on $C^*$-algebras, in Mappings of Operator Algebras (Philadelphia, PA, 1988), Progr. Math., Vol. 84, Editors H. Araki, R.V. Kadison, Birkhäuser Boston, Boston, MA, 1990, 141-182.
-
Schwieger K., Wagner S., Part I, Free actions of compact Abelian groups on ${\rm C}^*$-algebras, Adv. Math. 317 (2017), 224-266, arXiv:1505.00688.
-
Schwieger K., Wagner S., Part II, Free actions of compact groups on ${\rm C}^*$-algebras, J. Noncommut. Geom. 11 (2017), 641-668, arXiv:1508.07904.
-
Timmermann T., An invitation to quantum groups and duality. From Hopf algebras to multiplicative unitaries and beyond, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008.
-
Wagner S., Free group actions from the viewpoint of dynamical systems, Münster J. Math. 5 (2012), 73-97, arXiv:1111.5562.
-
Wassermann A., Ergodic actions of compact groups on operator algebras. I. General theory, Ann. of Math. 130 (1989), 273-319.
-
Wassermann A., Ergodic actions of compact groups on operator algebras. II. Classification of full multiplicity ergodic actions, Canad. J. Math. 40 (1988), 1482-1527.
-
Wassermann A., Ergodic actions of compact groups on operator algebras. III. Classification for ${\rm SU}(2)$, Invent. Math. 93 (1988), 309-354.
-
Woronowicz S.L., Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665.
|
|