Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 13 (2017), 062, 19 pages      arXiv:1701.05895      https://doi.org/10.3842/SIGMA.2017.062

Part III, Free Actions of Compact Quantum Groups on ${\rm C}^*$-Algebras

Kay Schwieger a and Stefan Wagner b
a) Iteratec GmbH, Stuttgart, Germany
b) Blekinge Tekniska Högskola, Sweden

Received April 05, 2017, in final form August 05, 2017; Published online August 09, 2017

Abstract
We study and classify free actions of compact quantum groups on unital ${\rm C}^*$-algebras in terms of generalized factor systems. Moreover, we use these factor systems to show that all finite coverings of irrational rotation ${\rm C}^*$-algebras are cleft.

Key words: free action; ${\rm C}^*$-algebra; quantum group; factor system; finite covering.

pdf (417 kb)   tex (29 kb)

References

  1. Albeverio S., Høegh-Krohn R., Ergodic actions by compact groups on $C^*$-algebras, Math. Z. 174 (1980), 1-17.
  2. Banica T., Fusion rules for representations of compact quantum groups, Exposition. Math. 17 (1999), 313-337, math.QA/9811039.
  3. Baum P.F., De Commer K., Hajac P.M., Free actions of compact quantum group on unital ${\rm C}^*$-algebras, arXiv:1304.2812.
  4. Bichon J., De Rijdt A., Vaes S., Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), 703-728, math.QA/0502018.
  5. Connes A., Landi G., Noncommutative manifolds, the instanton algebra and isospectral deformations, Comm. Math. Phys. 221 (2001), 141-159, math.QA/0011194.
  6. De Commer K., Actions of compact quantum groups, arXiv:1604.00159.
  7. De Commer K., Yamashita M., A construction of finite index ${\rm C}^*$-algebra inclusions from free actions of compact quantum groups, Publ. Res. Inst. Math. Sci. 49 (2013), 709-735, arXiv:1201.4022.
  8. De Commer K., Yamashita M., Tannaka-Krein duality for compact quantum homogeneous spaces. I. General theory, Theory Appl. Categ. 28 (2013), no. 31, 1099-1138, arXiv:1211.6552.
  9. Echterhoff S., Nest R., Oyono-Oyono H., Principal non-commutative torus bundles, Proc. Lond. Math. Soc. 99 (2009), 1-31, arXiv:0810.0111.
  10. Ellwood D.A., A new characterisation of principal actions, J. Funct. Anal. 173 (2000), 49-60.
  11. Gabriel O., Fixed points of compact quantum groups actions on Cuntz algebras, Ann. Henri Poincaré 15 (2014), 1013-1036, arXiv:1210.5630.
  12. Gabriel O., Weber M., Fixed point algebras for easy quantum groups, SIGMA 12 (2016), 097, 21 pages, arXiv:1606.00569.
  13. Gootman E.C., Lazar A.J., Peligrad C., Spectra for compact group actions, J. Operator Theory 31 (1994), 381-399.
  14. Konishi Y., Nagisa M., Watatani Y., Some remarks on actions of compact matrix quantum groups on $C^*$-algebras, Pacific J. Math. 153 (1992), 119-127.
  15. Landi G., van Suijlekom W., Principal fibrations from noncommutative spheres, Comm. Math. Phys. 260 (2005), 203-225, math.QA/0410077.
  16. Marciniak M., Actions of compact quantum groups on $C^*$-algebras, Proc. Amer. Math. Soc. 126 (1998), 607-616.
  17. Neshveyev S., Duality theory for nonergodic actions, Münster J. Math. 7 (2014), 413-437, arXiv:1303.6207.
  18. Neshveyev S., Tuset L., Compact quantum groups and their representation categories, Cours Spécialisés, Vol. 20, Société Mathématique de France, Paris, 2013.
  19. Olesen D., Pedersen G.K., Takesaki M., Ergodic actions of compact abelian groups, J. Operator Theory 3 (1980), 237-269.
  20. Peligrad C., Locally compact group actions on $C^*$-algebras and compact subgroups, J. Funct. Anal. 76 (1988), 126-139.
  21. Phillips N.C., Equivariant $K$-theory and freeness of group actions on $C^*$-algebras, Lecture Notes in Math., Vol. 1274, Springer-Verlag, Berlin, 1987.
  22. Phillips N.C., Freeness of actions of finite groups on $C^*$-algebras, in Operator Structures and Dynamical Systems, Contemp. Math., Vol. 503, Amer. Math. Soc., Providence, RI, 2009, 217-257.
  23. Podleś P., Symmetries of quantum spaces. Subgroups and quotient spaces of quantum ${\rm SU}(2)$ and ${\rm SO}(3)$ groups, Comm. Math. Phys. 170 (1995), 1-20, hep-th/9402069.
  24. Rieffel M.A., The cancellation theorem for projective modules over irrational rotation $C^*$-algebras, Proc. London Math. Soc. 47 (1983), 285-302.
  25. Rieffel M.A., Nonstable $K$-theory and noncommutative tori, in Operator Algebras and Mathematical Physics (Iowa City, Iowa, 1985), Contemp. Math., Vol. 62, Amer. Math. Soc., Providence, RI, 1987, 267-279.
  26. Rieffel M.A., Proper actions of groups on $C^*$-algebras, in Mappings of Operator Algebras (Philadelphia, PA, 1988), Progr. Math., Vol. 84, Editors H. Araki, R.V. Kadison, Birkhäuser Boston, Boston, MA, 1990, 141-182.
  27. Schwieger K., Wagner S., Part I, Free actions of compact Abelian groups on ${\rm C}^*$-algebras, Adv. Math. 317 (2017), 224-266, arXiv:1505.00688.
  28. Schwieger K., Wagner S., Part II, Free actions of compact groups on ${\rm C}^*$-algebras, J. Noncommut. Geom. 11 (2017), 641-668, arXiv:1508.07904.
  29. Timmermann T., An invitation to quantum groups and duality. From Hopf algebras to multiplicative unitaries and beyond, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008.
  30. Wagner S., Free group actions from the viewpoint of dynamical systems, Münster J. Math. 5 (2012), 73-97, arXiv:1111.5562.
  31. Wassermann A., Ergodic actions of compact groups on operator algebras. I. General theory, Ann. of Math. 130 (1989), 273-319.
  32. Wassermann A., Ergodic actions of compact groups on operator algebras. II. Classification of full multiplicity ergodic actions, Canad. J. Math. 40 (1988), 1482-1527.
  33. Wassermann A., Ergodic actions of compact groups on operator algebras. III. Classification for ${\rm SU}(2)$, Invent. Math. 93 (1988), 309-354.
  34. Woronowicz S.L., Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665.

Previous article  Next article   Contents of Volume 13 (2017)