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Abstract. This is a sequel to papers by the last two authors making the Riemann–Hilbert
correspondence and isomonodromy explicit. For the degenerate fifth Painlevé equation, the
moduli spaces for connections and for monodromy are explicitly computed. It is proven
that the extended Riemann–Hilbert morphism is an isomorphism. As a consequence these
equations have the Painlevé property and the Okamoto–Painlevé space is identified with
a moduli space of connections. Using MAPLE computations, one obtains formulas for the
degenerate fifth Painlevé equation, for the Bäcklund transformations.
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1 Introduction

In the series of papers [17, 18, 19, 21, 22] on isomonodromy families for Painlevé equations the
cases PI–PIV are treated. Here we apply our methods to degPV, the degenerate fifth Painlevé
equation. We hope to extend this in a later paper to PV. We now describe the method of the
Riemann–Hilbert correspondence for degPV, following closely [21, 22].

The degenerate fifth Painlevé equation degPV(θ0, θ1) depends on two parameters θ0, θ1 and
the corresponding isomonodromy family is given, to begin with, by the set S(θ0, θ1) of differential
modules M over C(z) defined by: dimM = 2; the exterior product Λ2M is trivial; the points 0, 1
are regular singular with local exponents ± θ0

2 and ± θ1
2 . Finally z =∞ is irregular singular with

Katz invariant 1
2 , which means that the ‘generalized eigenvalues’ at z = ∞ are ±t · z1/2 with

t ∈ C∗.
This set is made into an algebraic variety M(θ0, θ1) which is a moduli space for connections

on a fixed bundle on P1 of rank two and degree −1 with prescribed data (see Section 2.1) at
z = 0, 1,∞. If θ0 6= 0, θ1 6= 0, then M(θ0, θ1) is a fine modul space and is smooth. For θ0 = 0
and/or θ1 = 0, the moduli problem will be changed by adding “an invariant line”. This is called
a parabolic structure in the literature, see [4, 5, 6, 7]. It leads to a fine moduli spaceM+(θ0, θ1)
which is a desingularisation of M(θ0, θ1).

The analytic data attached to modules in S(θ0, θ1) are two monodromy matrices and one
Stokes matrix. They produce a ‘monodromy space’ R(s0, s1) depending on s0 = eπiθ0 + e−πiθ0

and s1 = eπiθ1 + e−πiθ1 . For s0 6= ±2 and s1 6= ±2 the monodromy space is a fine moduli space
and is smooth. It is in fact a smooth affine cubic surface with three lines at infinity. For the
other cases one changes the moduli problem by adding an ‘invariant line’. The fine moduli space
R+(s0, s1) for these new data is a minimal resolution of R(s0, s1).
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The Stokes matrix attached to a module in S(θ0, θ1) depends on the choice of a summation
direction at z =∞. This direction has to be different from the singular direction at z =∞ which
turns around ∞ for t varying in T := C∗. Therefore there is a locally, with respect to t ∈ C∗,
defined analytic Riemann–Hilbert map RH: M+(θ0, θ1) → R+(s0, s1) with s0 = eπiθ0 + e−πiθ0

and s1 = eπiθ1 + e−πiθ1 . After replacing T by its universal covering T̃ = C the morphism RH is
well defined. The main result is that the extended Riemann–Hilbert map

RH+ : M+(θ0, θ1)×T T̃ → R+(s0, s1)× T̃

is an analytic isomorphism. It follows from this that degPV has the Painlevé property and that
M+(θ0, θ1) coincides with the Okamoto–Painlevé space (see [23, 24, 25] for this subject). The
explicit computations of the spacesM+(θ0, θ1) and R+(s0, s1) lead, using MAPLE, to formulas
for degPV and for the Bäcklund transformations.

We note that our definition of degPV is not quite the same as the ‘classical’ degenerate fifth
Painlevé equation. The close relation between the two is given in Section 3. We were informed
by Y. Ohyama about the ‘equivalence’ between degPV and PIII(D6) found by V.I. Gromak [3].
A Hamiltonian for PIII(D6) is

1

t

(
q2p2 −

(
q2 − (α+ β)q − t

)
p− αq

)
.

The degrees in p and q are ≤ 2. Therefore the Hamilton equations allow to eliminate p (in terms
of q, q′) and also to eliminate q (in terms of p, p′). In the first case one obtains PIII(D6) and in
the second case the classical degenerate fifth Painlevé equation.

This equivalence does not seem to produce a relation between the isomonodromy families for
degPV and for PIII(D6).

Apart from the references given at the beginning of this introduction, several sources discuss
geometric aspects of Painlevé equations. Many of these can be found in the references of our
papers [17, 18, 19, 21, 22]. Classical’ papers on the subject are [8, 9, 12, 13, 14, 15, 16]. Especially
relevant for the present text are the paper by Ohyama and Okumura [11], Witte’s paper [26].
The book [2] by Fokas, Its, Kapaev, and Novokshenov discusses more analytic aspects of the
Riemann–Hilbert correspondence, but it does not discuss the degenerate fifth Painlevé equation.
Finally, we mention the recent paper [1] by Chekhov, Mazzocco, and Rubtsov which also provides
an interesting geometric appoach and overview.

2 The moduli space M(θ0, θ1) of connections

2.1 Definition of S(θ0, θ1)

An element of the set S(θ0, θ1) is (the isomorphy class of) a tuple (M, θ0, θ1, t) where M is
a differential module over C(z) such that dimM = 2; detM := Λ2M is the trivial module;
M has three singular points 0, 1,∞ and their Katz invariants are r(0) = 0, r(1) = 0, r(∞) = 1/2.
Further, the singularities are represented:

• at z = 0 by d
dz + 1

z

( ω0 ∗
0 −ω0

)
with ω0 = θ0

2 and θ0, ∗ ∈ C;

• at z = 1 by d
dz + 1

z−1
( ω1 ∗

0 −ω1

)
with ω1 = θ1

2 and θ1, ∗ ∈ C;

• at z =∞ by z d
dz +

(
ω∞ 0
0 −ω∞

)
with ω∞ = tz1/2 and t ∈ C∗.

Let ∂ denote the given differential operator on M , corresponding with the derivation d
dz

on C(z), i.e., ∂(fm) = df
dzm+ f∂(m) for f ∈ C(z) and m ∈M .
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The condition at z = 0 means that C((z))⊗M has a C[[z]]-lattice with a basis such that the
matrix of z∂ is

( ω0 ∗
0 −ω0

)
. For θ0 6= 0 one can always take ∗ = 0. For θ0 = 0, any ∗ is admissible.

At z = 1 the condition is similar for the matrix of (z − 1)∂.
The condition at z =∞ means that C((z−1/2))⊗M has a basis for which z∂ has the matrix(

ω∞ 0
0 −ω∞

)
. In the construction of the moduli space M(θ0, θ1) this matrix will be changed in

a matrix defined over C((z−1)).
There is an obvious bijection S(θ0, θ1) → S(θ0 + a, θ1 + b) for any a, b ∈ 2Z, obtained by

changing the lattices for z = 0 and z = 1.

2.2 Choosing connections

We represent M ∈ S(θ0, θ1) by a connection ∇ : V → Ω([0] + [1] + 2[∞])⊗V, where V is a vector
bundle on P1 of rank two. Thus the generic fiber of ∇ is the map M →M ⊗C(z) C(z)dz, given
by m 7→ ∂(m)dz.

The vector bundle V is determined by the choice of the lattices at every point of P1. For
the points z = a 6= 0, 1,∞ the lattice in C((z − a)) ⊗M is the C[[z − a]]-module generated by
ker(∂,C((z − a)) ⊗M). For the points z = 0 and z = 1 we choose the lattices corresponding
to the given θ0, θ1. In other words, the characteristic polynomials of the matrices of z∂ and

(z − 1)∂ are prescribed by X2 − θ20
4 and X2 − θ21

4 .
At z = ∞ the situation is more complicated. An invariant lattice at ∞ is represented over

the differential field C((z−1/2)) by z d
dz +

(
tz1/2 0
0 −tz1/2

)
. We need an expression over the field

C((z−1)) or “invariant lattices” for C((z−1))⊗M . For Katz invariant 1/2 or 1 at ∞, a lattice Λ
is called invariant if z∂Λ ⊂ Λ.

We adopt here the terminology [20] for the classification of differential modules over C((z−1)).
The formal solution space V at z =∞ is described as V = Vq⊕V−q = Ce1⊕Ce2 with q = tz1/2

and the formal monodromy γ is given by γ(e1) = e2 and γ(e2) = −e1. Indeed, the determinant
of M is trivial and hence det(γ) = 1. The (formal local) differential module C((z−1))⊗M and
its invariant lattices are now obtained by considering the invariants of U ⊗C V (here U is the
universal Picard–Vessiot ring for C((z−1))) under the actions of the differential automorphisms
of U over C((z−1)). A computation yields invariant lattices Λ1 and Λ2 represented by

z
d

dz
+

(
−1

4 tz
t 1

4

)
and z

d

dz
+

(
−3

4 tz
t −1

4

)
.

All lattices are given by znΛ1 and znΛ2 with n ∈ Z.

Remark 2.1. By conjugation with the constant matrix ( t 0
0 1 ) one can change these formulas

into

z
d

dz
+

(
−1

4 t2z
1 1

4

)
and z

d

dz
+

(
−3

4 t2z
1 −1

4

)
.

We want that detV := Λ2V has degree −1. The reason is that, in general V = O(d1)⊕O(d2)
with d1 ≤ d2. The differential module C((z−1)) ⊗M is irreducible because of the ramification
at z = ∞. Hence M and also the connection on V is irreducible. This implies (in this special
case) that d2 − d1 ≤ 2. If we make the natural assumption that degV = 0, then there are
two possibilities for V, namely O ⊕ O and O(−1) ⊕ O(+1). The construction of a family of
connection would involve a construction of a family of vector bundles of rank two and degree 0
on P1. However, we will avoid this by imposing degV = −1. Then there is only one possibility
for V, namely O ⊕O(−1).

Finally, the degree of V is −1 precisely for the choice of the lattice Λ2 corresponding to

z d
dz +

(
− 3

4
tz

t − 1
4

)
.
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2.3 Computation of the connection

We identify V with Oe1⊕O(−[∞])e2 (a subvector bundle of the free (i.e., trivial) vector bundle
Oe1 ⊕ Oe2). Let D = ∇ d

dz
and D̃ := z(z − 1)D. Then D̃e1 ∈ 〈1, z, z2〉e1 + 〈1, z〉e2; D̃e2 ∈

〈1, z, z2, z3〉e1 + 〈1, z, z2〉e2. Here 〈∗, ∗, ∗〉 denotes the C-vector spaces generated by these ∗’s.
The vector bundle V has an automorphism group G and the moduli spaceM(θ0, θ1) (note that
we fix the parameters θ0 and θ1 in this construction), that we are constructing, is obtained by
dividing the space of all matrices for the connections by the group G. This group consists of
the elements e1 7→ λe1, e2 7→ µe2 + (x0 + x1z)e1 (with λ, µ ∈ C∗, x0, x1 ∈ C). Further the
multiples of the identity act trivially and we have only to consider the automorphisms e1 7→ λe1,
e2 7→ e2 + (x0 + x1z)e1.

Since the connection is irreducible we have that D̃e1 = 〈1, z, z2〉e1 + (b1z + b0)e2 with (b1z +
b0) 6= 0. We consider now two affine parts: b1 6= 0 and b0 6= 0. The two affine parts are divided
out by the action of G. These quotients are geometric quotients and they are obtained by
normalization of some of the entries of the matrices. One obtains two affine varietiesM1(θ0, θ1)
and M2(θ0, θ1) which are glued to the moduli space M(θ0, θ1).

2.3.1 The first aff ine part M1(θ0, θ1)

This is obtained by dividing the open subspace b1 6= 0 by the action of the group G. First one
normalizes b1 by the automorphism e1 7→ λe1 to b1 = 1. Using e2 7→ e2 + (a0 + a1z)e1 one
normalizes further to D̃e1 = a0e1 + (z+ b0)e2 and D̃e2 = (c0 + c1z+ c2z

2 + c3z
3)e1 + (d0 +d1z+

d2z
2)e2. Now we have to compute the equations between the variables due to the prescription

of the three invariant lattices.
For z = 0. Now 1

z−1D̃ has modulo z = 0 the eigenvalues ± θ0
2 . This yields a0 + d0 = 0 and

a0d0 − b0c0 = − θ20
4 .

For z = 1. Now 1
z D̃ has modulo z = 1 the eigenvalues ± θ1

2 . This yields a0 + d0 + d1 + d2 = 0

and a0(d0 + d1 + d2)− (1 + b0)(c0 + c1 + c2 + c3) = − θ21
4 .

For z = ∞. The local basis of V at z = ∞ is e1, z
−1e2. The operator 1

z−1D̃ w.r.t. this

local basis is z d
dz +

(
a0
z−1

c0+c1z+c2z
2+c3z

3

z(z−1)

z
z+b0
z−1

−1+ d0+d1z+d2z
2

z−1

)
. This should be equivalent to z d

dz +

(
−3
4

tz

t −1
4

)
. The

characteristic polynomials of the two matrices should be equal modulo C[[z−1]].

Remark 2.2. A more precise computation is needed to verify the correctness of the last state-

ment. On another basis of the lattice, the operator z d
dz +

(
−3
4

tz

t −1
4

)
reads

(
1 +A1z

−1 + · · ·
)−1

A−10

(
z
d

dz
+

(−3
4 tz
t −1

4

))
A0

(
1 +A1z

−1 + · · ·
)
,

leading to

z
d

dz
+A−10

((−3
4 tz
t −1

4

)
+ t

(
x3 x4 − x1
0 −x3

))
A0,

where A0 ∈ GL2(C), x1, x3, x4 ∈ C. Thus d2 = 0, d1 = 0, c3 = 0 and c2 = t2.

Finally the connection as matrix differential operator w.r.t. e1, e2 reads

d

dz
+

1

z(z − 1)

(
a0 c0 + c1z + t2z2

z + b0 −a0

)
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and there are two equations

a20 + b0c0 =
θ20
4
, a20 + (1 + b0)

(
c0 + c1 + t2

)
=
θ21
4
.

The last equation can be changed into

c0 = −θ
2
0

4
+
θ21
4
− c1 − t2 − b0c1 − b0t2

and this is used to eliminate c0. This leaves four variables a0, b0, c1, t and one equation

a20 + b0

(
−θ

2
0

4
+
θ21
4
− c1 − t2 − b0c1 − b0t2

)
− θ20

4
= 0.

The above describes the space M1(θ0, θ1). We note that this space depends only on θ20 and θ21.
The space M1(θ0, θ1) is smooth if θ0 6= 0 and θ1 6= 0. For θ0 = 0, θ1 6= 0, the singular locus is

given by a0 = 0, b0 = 0, c1 = −t2 +
θ21
4 . For θ0 6= 0, θ1 = 0, the singular locus is given by a0 = 0,

b0 = −1, c1 = −t2 +
θ20
4 . For θ0 = θ1 = 0, the singular locus is given by a0 = 0, b0(b0 + 1) = 0,

c1 = −t2.
MoreoverM1(θ0, θ1) seen as a two dimensional space over the field C(t) has the same singular

locus but now seen as a set of at most two points.

Observation 2.3. For every a ∈ C∗ the closed subspace of M1(θ0, θ1), defined by t = a, is
simply connected.

Indeed, the equation

a20 + b0

(
−θ

2
0

4
+
θ21
4
− c1 − a2 − b0c1 − b0a2

)
− θ20

4
= 0

defines this two-dimensional space. It is mapped to C2 by (a0, b0, c1) 7→ (a0, b0). The fibre is
either empty, or a point, or C. Hence it suffices to show that the image B ⊂ C2 is simply
connected. Now B is the union of X := C× (C\{0,−1}) and the points (± θ0

2 , 0) and (± θ1
2 ,−1).

The canonical map π1(X, ∗) → π1(B, ∗) is surjective. Consider one of the two generators,
s ∈ [0, 1] 7→

(
θ0
2 , e

2πis
)

of π1(X, ∗). In B this closed path is homotopic to the constant closed

path by the homotopy s, λ ∈ [0, 1] 7→
(
θ0
2 , λe

2πis
)
. The same observation can be made for the

other generator of π1(X, ∗). Hence B is simply connected.

2.3.2 The second affine part M2(θ0, θ1)

This space is obtained by dividing the open subset b0 6= 0 by the action of G. Now b0 6= 0 is
normalized by the automorphism e1 7→ λe1 to b0 = 1.

Using e2 7→ e2 + (x0 + x1z)e2 one normalizes further to D̃e1 = a2z
2e1 + (b1z + 1)e2 and

D̃e2 = (c0+c1z+c2z
2+c3z

3)e1+(d0+d1z+d2z
2)e2. The equations derived from the prescribed

invariant lattices are
For z = 0: d0 = 0 and c0 =

θ20
4 .

For z = 1: a2 + d1 + d2 = 0 and a2(d1 + d2)− (1 + b1)(c0 + c1 + c2 + c3) = − θ21
4 .

For z =∞: the operator 1
z−1D̃ w.r.t. e1, z

−1e2 is

z
d

dz
+

(
a2z2

z−1
c0+c1z+c2z2+c3z3

z(z−1)
(1 + b1z)

z
z−1 −1 + d0+d1z+d2z2

z−1

)
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and is equivalent to

z
d

dz
+

(−3
4 tz
t −1

4

)
.

This yields the equations d2 = −a2 (and from before d1 + d2 = −a2 and thus d1 = 0). Further
a22 + b1c3 = 0 and c3 = t2 − b1c2 − a2 is used to eliminate c3. One obtains the equation

c1 + c2 + t2 + b1
θ20
4

+ b1c1 − a2 +
θ20
4
− θ21

4
= 0

which eliminates c2. The matrix differential operator w.r.t. the basis e1, e2 is now

d

dz
+

1

z(z − 1)

(
a2z

2 θ20
4 + c1z + c2z

2 + (t2 − b1c2 − a2)z3
1 + b1z −a2z2

)

in the variables a2, b1, c1, t and one equation a22 + b1(−a2− b1c2 + t2) = 0 with c2 eliminated as
above. The above describes the space M2(θ0, θ1).

The singular locus of this three-dimensional variety is given by θ1 = 0, a2 = 0, b1 = −1,

c1 = t2 − θ20
4 (note that t 6= 0). As a variety over C(t) the singularity occurs only for θ1 = 0 and

consists of one point.

The two parts glue to the required space M(θ0, θ1).

Observation 2.4. For any a ∈ C∗ the closed subspace of M(θ0, θ1), defined by t = a, is simply
connected.

Indeed, by Observation 2.3, this holds for the first open affine part of this space. For the
second open affine part the same reasoning proves the statement. Van Kampen’s theorem
finishes the proof.

2.3.3 Resolving the singularities of M(θ0, θ1)

For θ0 6= 0, θ1 6= 0, the space M(θ0, θ1) is the fine moduli space for the connections on the
fixed vector bundle V of rank 2 and degree −1 with the prescribed singularities. The space
M(θ0, θ1) is smooth and simply connected for any nonzero fixed value of t. Its set of closed
points M(θ0, θ1)(C) coincides by construction with S(θ0, θ1).

For θ0 = 0 and/or for θ1 = 0 the space M(θ0, θ1) has singularities and is no longer a fine
moduli space. Consider the case θ0 = 0 and θ1 6= 0.

A tuple (M, θ0 = 0, θ1, t) is represented at z = 0 by a lattice Λ ⊂ C((z)) ⊗M such that
δ(Λ) ⊂ Λ and the action of δ := zD on Λ/zΛ has trace zero and determinant zero. There exists
a basis of Λ over C[[z]] such that δ has the matrix ( 0 0

0 0 ) or ( 0 1
0 0 ). The spaceM(θ0 = 0, θ1) does

not distinguish between these cases. Therefore it is not a fine moduli space and moreover it has
a singularity.

There is a geometric way to treat these problems. One adds to the data (M, θ0 = 0, θ1, t)
a ‘line’. This means the following. The assumption θ0 = 0 defines a lattice Λ ⊂ C((z)) ⊗M
invariant under δ. The ‘line’ is a 1-dimensional summand of Λ, invariant under δ. We note that
there are two cases:

(1) δ has matrix ( 0 0
0 0 ) on a basis e1, e2 of Λ. Then the possible lines are C[[z]]e with e ∈

Ce1 + Ce2, e 6= 0. The possibilities form a P1 over C.

(2) δ has matrix ( 0 1
0 0 ) on a basis e1, e2 of Λ. Then C[[z]]e1 is the only possible ‘line’.
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This additional ‘line’ is called a “parabolic structure” (see [4, 6, 7]) or a “level structure”.
This defines a new set S+(θ0 = 0, θ1) and a new moduli problem consisting of connections on
the above V and an invariant line in V0⊗C[[z]] (here V0 denotes the stalk of V at z = 0). There
is a fine moduli space which we call M+(θ0 = 0, θ1). The natural morphism M+(θ0 = 0, θ1)→
M(θ0 = 0, θ1) turns out to be the resolution of the latter space, seen as a surface over C(t) or
as a surface after fixing a value for t. The preimage of the singular point is the projective line
over C. This construction is also present in the papers [21, 22] and we will not make it explicit
here.

Something similar has to be done for the case θ0 6= 0, θ1 = 0 and the case θ0 = θ1 = 0.
In all cases we write M+(θ0, θ1) for the moduli space obtained in this way and, for notational
convenience we write M+(θ0, θ1) =M(θ0, θ1) also in the case θ0 6= 0, θ1 6= 0.

Observation 2.5. Consider a lattice Λ over C[[z]] of rank two with a differential operator δ
which has operator form z d

dz +( a cb d ) with a, b, c, d ∈ C[[z]] and ( a cb d ) ≡
(
α 0
0 β

)
mod (z). Suppose

that β − α 6∈ Z<0. Then Λ has a unique direct summand C[[z]]e such that δe = αe.

The proof is obtained by conjugating the operator z d
dz + ( a cb d ) with a suitable invertible

matrix
(
t1 0
t2 t3

)
∈ GL2(C[[z]]). After conjugation with a diagonal matrix in GL2(C[[z]]) one can

suppose that the differential operator is z d
dz + ( α c

b β ) and b, c ∈ zC[[z]]. There exists x ∈ C[[z]]

such that
(

1 0
−x 1

) {
z d
dz + ( α c

b β )
}

( 1 0
x 1 ) equals z d

dz +
( α ∗
0 β

)
. Indeed, this condition is equivalent

to the equation z dxdz + (β − α)x+ b− cx2 = 0. Write x =
∑
n≥1

anz
n. The equation reads

∑
n≥1

(n+ β − α)anz
n +

∑
n≥1

bnz
n −

∑
n≥1

cnz
n ·
(∑
n≥1

anz
n

)2

= 0

and there is a unique solution.
Now we consider the moduli space M(θ0, θ1) for some θ0 ∈ Z>0. From Observation 2.5

one concludes that the invariant lattice Λ over C[[z]] has a direct summand C[[z]]e such that
δe = − θ0

2 e. In other words, there is a unique ‘line’ present in this situation and the ‘level
structure’ at z = 0 is already present. This explains why M(θ0, θ1) has no singularities for non
zero integer values of θ0 and θ1.

Another interesting way to produce the correct moduli space for the cases θ0 = 0 and/or
θ1 = 0 is the following. A differential module M with the required data is represented by
a connection on a vector bundle V of rank 2, with degree −3 instead of −1. Then V is identified
with O(−[∞])e1 ⊕ O(−2[∞])e2. The connection ∇ : V → V ⊗ Ω([0] + [1] + 2[∞]) is prescribed
by the local differential operators

z
d

dz
+

(
θ0
2 0

0 − θ0
2 − 1

)
, (z − 1)

d

dz
+

(
θ1
2 0

0 − θ1
2 − 1

)
, z

d

dz
+

(
−3

4 t2z
1 −1

4

)
.

As in Section 2.3 one has to consider two affine parts. On the first part the operator reads

d

dz
+

1

z(z − 1)

(
a0 c0 + c1z + c2z

2 + c3z
3

z + b0 d0 + d1z + d2z
2

)
and on the second part it is

d

dz
+

1

z(z − 1)

(
a2z

2 c0 + c1z + c2z
2 + c3z

3

1 + b1z d0 + d1z + d2z
2

)
.

The equations for the entries in these matrices are similar to those of Sections 2.3.1 and 2.3.2.
After a computation one finds that singular points only occur for the cases θ0 = −1 and/or
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θ1 = −1. In particular, this produces a smooth moduli space for, say, θ0 = 0 and θ1 6= −1.
Other choices for V with negative odd degree −2d − 1 and local equations at z = 0 and z = 1
where the above matrices have traces −d, −d can be used to construct smooth moduli spaces
for all combinations of θ0 and θ1.

In the sequel we write M+(θ0, θ1) for the resolution of the space M(θ0, θ1). We note that
M+(θ0, θ1) is in general not yet the Okamoto–Painlevé space for the following reason. For any
a ∈ C∗, the closed subspace of M+(θ0, θ1), given by t = a, is simply connected. This follows
from Observation 2.4 and the fact that a fibre of M+(θ0, θ1) → M(θ0, θ1) is either a point or
a projective line over C.

The ‘t-part’ ofM+(θ0, θ1) runs in C∗, which is not simply connected. In the earlier definition
of Okamoto’s space of initial values ‘simply connected’ was required. However, in one of the later
papers of Okamoto et al. [10] the condition ‘simply connected’ for ‘the space of initial values’ is
removed.

The other reason to replace t by e2πiu with u ∈ C is the following. The map from a tuple
(M, θ0, θ1, t) to the monodromy data at z = ∞ depends on the choice of a direction for multi-
summation. This direction has to be different from the singular direction and the latter moves
with t.

As we will see in Section 4, the monodromy space R(s0, s1) has for the values s0 = ±2 and
s1 = ±2 singular points. Further s0 = eπiθ0 + e−πiθ0 and s1 = eπiθ1 + e−πiθ1 . Also in this case
one has to add a similar level structure as a method to obtain a desingularisation R+(s0, s1)
of R(s0, s1). Further we will show that R+(s0, s1) is simply connected.

3 Computation of the Painlevé equation degPV

This calculation is done on the first affine part of the spaceM(θ0, θ1). There an isomonodromic
family d

dz + A with A = A(z, t) is given and computed by the assumption that this operator

commutes with an unknown operator d
dt +B with B = B(z, t). This is equivalent to the formula

∂A
∂t = ∂B

∂z + [A,B].

From the singularities of A one derives that B is w.r.t. z a polynomial matrix of degree at
most 1. Further, both A and B are 2 × 2-matrices with trace 0. This we use to make the
computations smoother.

Write H =
(
1 0
0 −1

)
, E1 = ( 0 1

0 0 ), E2 = ( 0 0
1 0 ). Observe [H,E1] = 2E1, [H,E2] = −2E2,

[E1, E2] = H. In the sequel we write f ′ for df
dt . Write A = a0

z(z−1)H + c0+c1z+t2z2

z(z−1) E1 + z+b0
z(z−1)E2.

Write B = BHH +B1E1 +B2E2 and BH = BH,0 +BH,1z, B1 = B1,0 +B1,1z, B2 = B2,0 +B2,1z
where the B∗,∗ only depend on t. The equation ∂A

∂t = ∂B
∂z + [A,B], multiplied by z(z − 1), has

coefficients with respect to the basis H, E1, E2 which read:

(H) a′0 = z(z − 1)BH,1 +
(
c0 + c1z + t2z2

)
(B2,0 +B2,1z)− (z + b0)(B1,0 + zB1,1),

(E1) c′0 + c′1z + 2tz2 = z(z − 1)B1,1 + 2a0(B1,0 +B1,1z)

− 2(BH,0 +BH,1z)
(
c0 + c1z + t2z2

)
,

(E2) b′0 = z(z − 1)B2,1 − 2a0(B2,0 +B2,1z) + 2(BH,0 +BH,1z)(z + b0).

Each of these three equations is considered with respect to the degrees in z. A sequence of
solving equations (in a suitable order!) yields the following:

(H) degree 3 implies B2,1 = 0; degree 2 implies 0 = BH,1 + t2B2,0 − B1,1 and so B2,0 = 2t−1;
degree 1 implies 0 = c1B2,0−B1,0− b0B1,1 and so B1,0 = c1 ·2t−1− b0 ·2t; degree 0 implies
a′0 = c0B2,0 − b0B1,0 and so a′0 = 2t−1c0 − b0(2t−1c1 − 2tb0);
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(E1) degree 3 implies BH,1 = 0; degree 2 implies 2t = B1,1− 2BH,0t
2 and so B1,1 = 2t; degree 1

implies c′1 = −B1,1 + 2a0B1,1 and so c′1 = 2t(2a0 − 1); degree 0 implies c′0 = 2a0B1,0 and
so c′0 = 2a0(c1 · 2t−1 − b0 · 2t);

(E2) b′0 = −2a0B2,0+2BH,0(z+b0) and thus BH,0 = 0 and b′0 = −2a0B2,0 and so b′0 = −2a0·2t−1.

This leads to the following set of equations:

(1) a20 + b0c0 =
θ20
4
,

(2) c0 = −θ
2
0

4
+
θ21
4
− c1 − t2 − b0c1 − b0t2,

(3) a′0 = 2t−1c0 − b0
(
2t−1c1 − 2tb0

)
,

(4) c′1 = −2t+ 4a0t,

(5) c′0 = 2a0
(
2t−1c1 − 2tb0

)
,

(6) b′0 = −4a0t
−1.

This is solved, using MAPLE, by the following steps: Eliminate c0 by (2) and a0 by using (6).
In the new set of equations one can eliminate c1 in a linear way. Then MAPLE yields a second-
order equation for b0. Write the matrix differential operator as d

dz + ( a c
b −a ). Then taking the

first vector as cyclic vector one obtains a scalar equation
(
d
dz

)2− c′

c
d
dz −a

′−a2− bc+a c
′

c . The q
for the Painlevé equation is the pole 6= 0, 1,∞ of this scalar equation. Thus q = −b0. The
Hamiltonian system for the Painlevé equation has variables q and p where p is the residue of
the term −a′ − a2 − bc + a c

′

c at z = q. One finds in this way for degPV and the Hamiltonian
function H the formulas

q′′ =
1

2

(
1

q
+

1

q − 1

)
(q′)2 − q′

t
+

2(q − 1)θ20
qt2

− 2qθ21
(q − 1)t2

+ 8q(q − 1),

p =
t

4
q′, H =

2(p2 − θ20
4 )

tq
−

2(p2 − θ21
4 )

t(q − 1)
+ 2qt,

with here, exceptionally, q′ = q(1− q)∂H∂p and p′ = −q(1− q)∂H∂q .

We note that the formula for degPV coincides with the one in [19].

The relation between this degPV and the classical degenerate PV is the following. Consider
solutions q(t) of degPV which are even. Then these are written as q(t) = Q(t2) for some
function Q(s). One easily computes that the second-order differential equation for Q is

Q′′ =
1

2

(
1

Q
+

1

Q− 1

)
(Q′)2 − Q′

s
+

(Q− 1) θ
2
o
2

Qs2
−

Q
θ21
2

(Q− 1)s2
+

2Q(Q− 1)

s
.

One substitutes Q = y
y−1 and finds for y the second-order differential equation

y′′ =
1

2

3y − 1

y(y − 1)
(y′)2 − y′

s
+
y(y − 1)2θ21

2s2
− (y − 1)2θ20

2s2y
− 2y

s
.

This is the classical degenerate PV(α, β, γ, δ), normalized as the following special case PV

( θ21
2 ,

− θ20
2 ,−2, 0

)
of PV.

Remark 3.1. The formula for PV in [19] reduces to the classical formula for PV as well, using
the same substitution q = y

y−1 .
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4 The moduli space for the analytic data R(s0, s1)

We reproduce here, with a slightly different choice of signs, the paper [19]. The solution space V
at z =∞ has a basis e1, e2 such that the formal monodromy is

(
0 −1
1 0

)
and the only Stokes matrix

has the matrix ( 1 0
e 1 ). The topological monodromy at z = ∞ is the product M∞ =

(−e −1
1 0

)
.

By multisummation in a suitable direction we combine this with the monodromy matrices M0

and M1 for loops around z = 0 and z = 1. Put s0 = eπiθ0 + e−πiθ0 , s1 = eπiθ1 + e−πiθ1 .
Then M0, M1 have determinants 1 and traces s0, s1. One has the relation M0M1M∞ = 1.

The basis e1, e2 is unique up to e1, e2 7→ λe1, λe2. This transformation acts trivially on the

matrices. Write M1 =
(
a1 b1
c1 d1

)
. Then M0 is the inverse of M1M∞. Hence R(s0, s1) is the affine

space with coordinate ring C[a1, b1, c1, d1, e] with the relations

a1d1 − b1c1 = 1, a1 + d1 = s1, −a1e+ b1 − c1 = s0.

Elimination of c1, d1 and x1 = −b1, x2 = −a1, x3 = −e leads to the ring C[x1, x2, x3]/(x1x2x3 +
x21 + x22 + s0x1 + s1x2 + 1).

Only for s1 = ±2 and for s0 = ±2 the corresponding affine cubic surface R(s0, s1) has
singularities:

s1 = ±2, x1 = 0, x2 = ∓1, x3 = ±s0, and

s0 = ±2, x1 = ∓1, x2 = 0, x3 = ±s1.

In particular for s0 6= ±2, s1 6= ±2 the space R(s0, s1) has no singularities.

Observation 4.1. R(s0, s1) is simply connected for all s0, s1.

Proof. Consider the projection of R(s0, s1) → C2, by (x1, x2, x3) 7→ (x1, x2). The fibres of
this map are either a point or C or empty. The image B is the union of (C∗)2 with the points
{(0, x2) |x22 +s1x2 + 1 = 0} and {(x1, 0) |x21 +s0x1 + 1 = 0}. It suffices to show that B is simply
connected. The inclusion (C∗)2 ⊂ B induces a surjection π1((C∗)2, ∗) → π1(B, ∗). Consider a
generator of π1((C∗)2, ∗), represented by the loop s ∈ [0, 1] 7→ (x̃1, e

2πis), where x̃1 is chosen
such that x̃21 + s0x̃1 + 1 = 0. In B this loop is homotopic to the constant loop s 7→ (x̃1, 0) by the
homotopy (s, λ) ∈ [0, 1]2 7→ (x̃1, λe

2πis). One concludes that the two generators of π1((C∗)2, ∗)
have trivial image in π1(B, ∗) and that π1(B, ∗) = 1. �

As in Section 2.3.3, the geometric way to resolve the singularities of R(s0, s1) for s0 = ±2
and/or s1 = ±2 is to add a level structure consisting of a line (or two lines if both s0 = ±2
and s1 = ±2). The resulting space is denoted by R+(s0, s1). We will work out the details for
s0 6= ±2 and s1 = 2.

The fibre of the surjective morphism R+(s0, s1) → R(s0, s1) is in general a point and there
are at most two fibres isomorphic to P1. It follows that R+(s0, s1) is simply connected as well.

For the formulation of the (extended) Riemann–Hilbert morphism we need to replace the
space T = C∗ of the variable t by its universal covering T̃ = C. The reason is that the singular
direction at infinity varies with t. Then

RH+ : M+(θ0, θ1)×T T̃ → R+(s0, s1)× T̃

is a well defined analytic map. This (extended) Riemann–Hilbert map RH+ is bijective on
points. Indeed, the points on the left hand side correspond to the tuples (M, θ0, θ1, t) with
additionally u ∈ C with t = e2πiu and level structure(s) if needed. The points on the right
hand side correspond to the analytic data with level structure (if needed), u ∈ C and the formal
structure at z =∞. By [19, Theorem 1.7], these two sets coincide. As in [18, Theorem 1.5] we
conclude that RH+ is an analytic isomorphism between two algebraic varieties over C. Moreover,
as in the proof of loc. sit., from the isomorphism one obtains (compare [10])
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Theorem 4.2. The Painlevé property for degPV(θ0, θ1) holds. Moreover M+(θ0, θ1) ×T T̃ is
the Okamoto–Painlevé space.

The resolution R+(s0, 2) → R(s0, 2) for s0 6= ±2. As before, any differential module M
(with the given data) determines a basis e1, e2 of the solution space V at z =∞ such that the
formal monodromy γ has matrix

(
0 −1
1 0

)
. This basis is unique up to multiplication of e1, e2 by

the same constant. All maps are written as matrices with respect to this basis.
A point of R+(s0, 2) corresponds to a tuple (M0,M1,M∞,Cv) where M0, M1, M∞ are the

matrices for the topological monodromies for the points 0, 1, ∞. Then M0M1M∞ = 1 and v

is a non zero eigenvector of M1 (for the eigenvalue 1). Write M1 =
(
a1 b1
c1 d1

)
, M∞ =

(−e −1
1 0

)
,

v = ( y0y1 ). There are two affine parts given by the cases y0 6= 0 and y1 6= 0. We consider here
the first case and normalize y0 = 1.

The matrix M0 is determined by M0M1M∞ = 1. The equations in the variables a1, b1, c1,
d1, e, y1 are

a1 + d1 = 2, a1d1 − b1c1 = 1, a1 − 1 + b1y1 = 0, c1 + (d1 − 1)y1 = 0,

where the last two equations come from: v is eigenvector for M1. One eliminates c1, d1 by
a1 +d1 = 2 and −a1e+ b1− c1 = s0. One writes x1 = −b1, x2 = −a1, x3 = −e. Thus the ring of
regular functions on the affine part that we are looking at has the form C[x1, x2, x3, y1]/relations
and the relations are

x1x2x3 + x21 + x22 + s0x1 + 2x2 + 1 = 0, (x2 + 1) + x1y1 = 0,

(1 + x2)y1 = x2x3 + x1 + s0.

The morphism R+(s0, 2) → R(s0, 2), restricted to this affine part, is given by the obvious
homomorphism

C[x1, x2, x3]/
(
x1x2x3 + x21 + x22 + s0x1 + 2x2 + 1

)
→ C[x1, x2, x3, y1]/relations.

For x1 6= 0 one can eliminate y1 by using the equation (x2 + 1) + x1y1 = 0. In fact, the above
map is an isomorphism after inverting the element x1. For x1 = 0 one finds that (x1, x2, x3) =
(0,−1, s0) and this is the unique singular point of R(s0, 2). The points lying above this singular
point are (x1, x2, x3, y1) = (0,−1, s0, a) for all a ∈ C. One easily verifies that these points of
R+(s0, 2) are smooth.

The computation of the affine part y1 6= 0 is similar. One concludes thatR+(s0, 2)→ R(s0, 2)
is a resolution of singularities and that the fibre above the singular point is P1.

5 Computing the Bäcklund transformations

Write S for the union of the sets S(θ0, θ1) taken over all θ0, θ1. We recall that θ0, θ1, t determine
the invariant lattices at z = 0, 1,∞. A ‘natural’ automorphism of S may change a given tuple
(M, θ0, θ1, t) into the same module M but with different lattices. For example, the lattice at
z = 0 will be changed by replacing θ0 by θ0 + 2. Further the module M can be changed and
one can consider the automorphism of P1 which interchanges z = 0, 1 and has z = ∞ as fixed
point.

Some ‘natural’ automorphisms of S are given by the tuple (M, θ0, θ1, t) 7→

(1) (M, θ0, θ1,−t),
(2) (M,−θ0, θ1, t),
(3) (M, θ0,−θ1, t),
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(4) (M̃, θ1, θ0) where M̃ is obtained from M by the automorphism z 7→ 1− z,
(5) (N ⊗M, θ0 + 1, θ1, t) where N is the 1-dimensional module represented by d

dz + 1
2z .

These special automorphisms will be lifted to isomorphisms between various moduli spaces
M+(θ0, θ1). The isomorphisms preserve the analytic data and map therefore solutions of one
degPV equation to solutions of another. They are Bäcklund transformations for the degPV and
we hope that we found all of them in this way.

Discussion of the transformations: (1) only changes the variable. It induces the Bäcklund
transformation which sends a solution q(t) of degPV(θ0, θ1) to another solution q(−t) of that
equation. (2) and (3) induce the identity on the solutions of all degPV.

(4) Consider a point M of M(θ0, θ1) belonging to the first affine chart of this variety. It is

represented by d
dz + 1

z(z−1)

(
a0 c0+c1z+t2z2

z−q −a0

)
. The change z 7→ 1 − z applied to this operator

yields

d

dz
+

1

z(z − 1)

(
−a0 −c0 − c1(1− z)− t2(1− z)2

z + q − 1 a0

)
.

A small computation shows that after changing t into it this becomes a differential operator
belonging to M(θ1, θ0). This produces the Bäcklund transformation q(t) 7→ −q(it) + 1 which
sends a solution of degPV(θ0, θ1) to a solution of degPV(θ1, θ0).

(5) M is locally represented by z d
dz +

(
ω0 0
0 −ω0

)
with ω0 = θ0

2 and by z d
dz +

(
−3
4

t2z

1 − 1
4

)
.

After taking the tensor product with N these operators become z d
dz +

(
ω0+

1
2

0

0 −ω0+
1
2

)
and

z d
dz +

(
−3
4
+ 1

2
t2z

1 − 1
4
+ 1

2

)
. By multiplying one basis vector by z−1, the first operator becomes

z d
dz +

(
ω0+

1
2

0

0 −ω0− 1
2

)
and the second becomes z d

dz +

(
−3
4
− 1

2
t2z

1 − 1
4
+ 1

2

)
. This shows the validity

of (5).
Using MAPLE one can compute the actual isomorphism between the two moduli spaces.

In terms of matrix differential operators, this works as follows. Let the differential operator
d
dz + A(a, q) represent an open part of the first affine chart M1(θ0, θ1). Here q stands for −b0
(as before) and a denotes a0. Further c1 is written as a rational function in a and q.

Similarly, let d
dz + Ã(ã, q̃) denote the differential operator on an open part of M(θ0 + 1, θ1).

Then there exists U ∈ GL2(C(z)) such that

U

(
d

dz
+A(a, q) +

(
1
2z 0
0 1

2z

))
U−1 =

d

dz
+ Ã(ã, q̃).

Further U , U−1 are seen to have poles of order ≤ 1 at z = 0 and z = ∞ and no further poles.
This information suffices for the computation of the solution q̃ of degPV(θ0 + 1, θ1) in terms of
the solution q of degPV(θ0, θ1) and its first derivative (and t, θ0, θ1)

q̃ = 1− θ20(q − 1)

4q2t2
+
aθ0
q2t2

+
θ21

4t2(q − 1)

and a longer formula for ã, namely

q − 1

8q3t2
θ30 +

q2 + 2aq − q − 6a

8q3t2
θ20 +

q − 1

2q
θ0 −

a(q2 + 2aq − q − 3a)

2(q − 1)q3t2
θ0 −

θ0θ
2
1

8qt2(q − 1)

− a

q
− q + 2a

8q(q − 1)t2
θ21 +

a2(2a+ q)

q3t2(q − 1)
.
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Now we compare the group of the Bäcklund transformations for degPV with the work of
N.S. Witte [26]. We restrict our transformations to the case of even solutions of degPV and

find the classical PV

( θ21
2 ,−

θ20
2 ,−2, 0

)
. The formulas (21), (22), (23) of [26] lead to v1 = θ0 + θ1

and v2 = θ0 − θ1. Our group of transformations for the even solutions of degPV is generated
by (θ0, θ1) 7→ (θ0 + 1, θ1) and (θ0, θ1) 7→ (θ1, θ0) and the ‘trivial’ transformations (θ0, θ1) →
(±θ0,±θ1). One easily verifies that this coincides with the group of transformations in [26].

We remark that the transformations θ0 7→ −θ0 and/or θ1 7→ −θ1 act trivially on solutions
of degPV. However (compare [26]), they do not act as the identity on a suitable Hamiltonian
system for degPV.
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